K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AB=AC;AD=AE\right)\)

D\(\in\)AB(gt)

E\(\in\)AC(gt)

Do đó: DE//BC(Định lí Ta lét đảo)

Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang(Định nghĩa hình thang)

Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

 

Bài 2: 

a: Xét ΔABC có

\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\)

Do đó: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

b: Ta có: \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)

\(\widehat{BMN}=\widehat{CNM}=180^0-70^0=110^0\)

17 tháng 6 2017
a, ta co ∆ABC can =>gocAMN=180°- goc A/2(1) Lai co ∆ ABC la ∆ can =>ABC =180°- goc A/2(2) Tu (1) va (2) => goc AMN=goc ABC b,theo cau a, goc AMN = ABC Ma 2 goc nay o vi tri dong vi =>MN//BC Lai co goc B= goc C (gt) =>tu giac BMNC la hthang can c,ta co BMNC la hthang can =>B=C=40° Vi goc B+M=180°(bu nhau) =>M= 180-40°=120°= goc N

a) Xét ΔABC có 

\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\left(BM=CN;AB=AC\right)\)

nên MN//BC(Định lí Ta lét đảo)

Xét tứ giác BMNC có MN//BC(cmt)

nên BMNC là hình thang

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân

b) \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)

\(\Leftrightarrow\widehat{BMN}=\widehat{MNC}=180^0-70^0=110^0\)

 e chưa học định lí ta let

 

8 tháng 9 2016

a)Có: AB=AM+MB

          AC=AN+NC

Mà: AB=AC(gt) ; BM=CN(gt)

=>AM=AN

=> ΔAMN cân tại A

=>\(\widehat{AMN}=\frac{180-\widehat{A}}{2}\)                    (1)

Xét ΔABC cân tại A(gt)

=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\)                     (2)

Từ (1)(2) suy ra:

^AMN=^ABC.MÀ hai góc này ở vị trí soletrong

=>MN//BC

Lại có: ^B=^C(gt)

=>BMNC là hình thang cân

b) Có: \(\widehat{MBC}=\widehat{NCB}=\frac{180-\widehat{A}}{2}=\frac{180-40}{2}=\frac{140}{2}=70\) (vì BMNC là ht)

Có: ^MBC+^BMN=180

=>^BMN=180-^MBC=180-70=110

=>^BMN=^MNC=110