Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy E sao cho BE = BA.
a) Chứng minh: AD = DE và DE vuông góc BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vàΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=90 độ
=>DE vuông góc BC
b: BA=BE
DA=DE
=>BD là trung trực của AE
=>BD vuông góc AE
c: AM//DE
DE vuông góc BC
=>AM vuông góc BC
AM//DE
=>góc MAE=góc AED
=>góc MAE=góc DAE
=>AE là phân giác của góc MAD
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a/ Xét tg ABD và tg EBD có:
BD chung
AB = BE (gt)
góc ABD = góc EBD ( BD là pg góc B)
=> tg ABD = tg EBD (c-g-c)
=> \(\left\{{}\begin{matrix}\text{AD = DE (2 cặp cạnh tương ứng)}\\\text{góc BAD = góc BED (2 cặp góc tương ứng)}\end{matrix}\right.\)
mà góc BAD = 90 ( tg ABC vuông tại A)
=> góc BED = 90
=> DE vuông góc BC
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
Suy ra: DA=DE
Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Ta có: BE=BA
nên B nằm trên đường trung trực của EA(1)
Ta có: DE=DA
nên D nằm trên đường trung trực của EA(2)
Từ (1) và (2) suy ra BD là đường trung trực của EA
Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Bài 2:
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường phân giác
b: Xét ΔAEH và ΔADH có
AH chung
AE=AD
Do đó: ΔAEH=ΔADH
Suy ra: \(\widehat{AEH}=\widehat{ADH}=90^0\)
hay HE\(\perp\)AB
c: Ta có: ΔAED cân tại A
mà AK là đường phân giác
nên AK là đường cao
\(Xét.\Delta BDA.và.\Delta BDE.có\\\widehat{ABD} =\widehat{EBD}\\ BD.chung\\ BA=BE\\ \Rightarrow\Delta....=\Delta....\left(ch,gn\right)\\ \Rightarrow DA=DE\left(2.cạnh,tương,ứng\right)\\ b,\\ Ta.có.\Delta BDA=\Delta BDE\left(cmt\right)\\ \Rightarrow\widehat{A}=\widehat{E}\left(2.góc.tương.ứng\right)\\ mà.\widehat{A}=90^0\\ \Rightarrow\widehat{E}=90^0\\ \Rightarrow DE\perp BC\)