Cho mình hỏi:
abc+acb=bca
hãy giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ADC vuông tại A( tam giác ABC vuông tại A) và tam giác CDE vuông tại E( DE vuông góc với BC) có:
EDC=DCA ( CD là tia phân giác góc ACB) và CD là cạnh chung
=> tam giác ACD=tam giác ECD( ch-gn)
=>DE=DA( cặp cạnh tương ứng)
1: Xet ΔACB và ΔHCA có
góc C chung
góc CAB=góc CHA
=>ΔACB đồng dạng vói ΔHCA
2: \(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)
AH=9*12/15=108/15=7,2cm
HB=12^2/15=144/15=9,6cm
=>HC=15-9,6=5,4cm
3: \(\dfrac{S_{ACB}}{S_{HCA}}=\left(\dfrac{CB}{CA}\right)^2=\dfrac{25}{9}\)
4: Xét ΔHAB có HE/HA=HD/HB
nên ED//AB
=>DE vuông góc AC
Xét ΔCAD có
DE,AH là đường cao
DE cắt AH tại E
=>Elà trực tâm
=>CE vuông góc AD
Ta có :
abc + acb =bca
=>c+b=a
=>b+c+1=c
Nên a+1=c
=>abc + acb = bca.
=>a00+bc +a00+cd = bca
=>2.a00+ bc+cb=b00 + c0 +a
=>a.100.2+b.10+c+c.10+b =b.100+c.10+a
=>a.200+11.(b+c)=b.100+c.10+a
=>a.200+11.1a=b.100+c.10+a
=>a.200+11.10+11.a=b.10.10+c.10+a
=>a.211+110=10.(b0+c)+a
=>a.21.10+11.10=10(b.10+c)
=>10.(a.21+11)=10(b.10+c)
=>a.21+11=b.10+c
=>a.21+11=b.10+c
Thử từng trường hợp a từ 1 đến 9 rồi suy ra b và c (lưu ý là b và c từ 0 đến 9)
Ta có :
abc + acb =bca
=>c+b=a
=>b+c+1=c
Nên a+1=c
=>abc + acb = bca.
=>a00+bc +a00+cd = bca
=>2.a00+ bc+cb=b00 + c0 +a
=>a.100.2+b.10+c+c.10+b =b.100+c.10+a
=>a.200+11.(b+c)=b.100+c.10+a
=>a.200+11.1a=b.100+c.10+a
=>a.200+11.10+11.a=b.10.10+c.10+a
=>a.211+110=10.(b0+c)+a
=>a.21.10+11.10=10(b.10+c)
=>10.(a.21+11)=10(b.10+c)
=>a.21+11=b.10+c
=>a.21+11=b.10+c
Thử từng trường hợp a từ 1 đến 9 rồi suy ra b và c (lưu ý là b và c từ 0 đến 9)