Cho N là số nguyên tố lớn hơn 3.Hỏi n2+2006 là số nguyên tố hay hợp số?
Giải dùm mình nha!Mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 4 + 2006 = 9k2 + 2010 = 3. (3k2 + 670) chia hết cho 3, là hợ số. Vậy n2 + 2006 là hợp số. Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
Vậy là hợp số
do \(n^2+2006\)là scp nên \(n^2+2006\)có dạng \(m^2\)ta có
\(n^2+2006=m^2\)
\(\Leftrightarrow m^2-n^2=2006\)
\(\Leftrightarrow\left(m-n\right)\left(m+n\right)=2006\)
trường hợp này chỉ tìm n thôi ha.....\(\Rightarrow m-n;m+n\inƯ\left(2006\right)\)bn giải tiếp ha
b. do n là số ngto >3 nên n có dạng 3k+1 và 3k+2 .....thay vào n xong tính ta đc\(n^2+2006\)là hợp số ( cả 2 th)
Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:
Với n = 3k +1 thì:
n^2 + 2006 = (3k+1). (3k+1) +2006
= 9.k.k + 3k+3k+1 + 2006
= 3.(3.k.k +1+1)+1+2006
= 3.(3.k.k +1+1) + 2007 chia hết cho 3
=> Với n = 3k+1 thì n^2 + 2006 là hợp số
Với n= 3k+2 thì:
(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006
=3(3.k.k + 2k +2k)+4+2006
=3(3.k.k +2k+2k)+2010 chia hết cho 3
=>Với n = 3k+2 thì n^2 +2006 là hợp số
Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số
(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)
=
TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007
3k(3k + 2) chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3 (1)
TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010
3k(3k + 4) chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3 (2)
Từ (1) và (2) => n2 + 2006 là hợp số
Vì n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3
hay n=3k+1 hoặc n=3k+2(k∈N)
Thay n=3k+1 vào \(n^2+2006\), ta được:
\(\left(3k+1\right)^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)
Thay n=3k+2 vào \(n^2+2006\), ta được:
\(\left(3k+2\right)^2+2006=9k^2+6k+2010=3\left(3k^2+2k+670\right)⋮3\)(2)
Từ (1) và (2) suy ra \(n^2+2006\) là hợp số
sai rồi : a) Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a( Z) ( a2 – n2 = 2006( (a-n) (a+n) = 2006 (*) (0,25 điểm).
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) ( 0,25 điểm).
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn (*) (0,25 điểm).
Vậy không tồn tại n để n2 + 2006 là số chính phương. (0,25 điểm).
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số.
Ta có: n là số nguyên tố lớn hơn 3
=>n không chia hết cho 3
TH1: n=3m+1 (m thuộc N)
=>n2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>n2 chia 3 dư 1
TH2: n=3n+2 (k thuộc N)
=>n2=(3k+2)2=3k(3k+2)+2(3k+2)=9k2+6k+6k+4=3(3k2+4k+1)+1
=>n2 chia 3 dư 1
Vậy n2 luôn chia 3 dư 1 (với n là SNT >3)
=>n2=3x+1 (x thuộc N)
=>n2+2006=3x+1+2006=3x+2007=3(x+669) chia hết cho 3
Vậy n2+2006 là hợp số
Đặt n2 + 2006 = a2 (a thuộc Z)
=> 2006 = a2 - n2 = (a - n)(a + n) (1)
Mà (a + n) - (a - n) = 2n chia hết cho 2
=>a + n và a - n có cùng tính chẵn lẻ
+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)
+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2+2006 là số chính phương
b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 (k$$N*)
+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
Vậy n2 + 2006 là hợp số
a) Giả sử n2
(a+n) = 2006 (*)
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*)
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia
hết cho 4 nên không thỏa mãn (*)
Vậy không tồn tại n để n2
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2
+ 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2
+ 2006 là hợp số.
+ 2006 là số chính phương khi đó ta đặt n2
+ 2006 là số chính phương.
Đã biết câu trả lời mà còn hỏi nữa con rảnh ruồi kia -__-
là hợp số vì n2 và 2006 có hơn 2 ước.
Ta có : n là số nguyên tố > 3
=> n2 = không chia hết cho 3
=> n2 = 3k + 1
vậy 3k+1+2006 = 3k + 2007
ta có: 3k chia hết cho 3
2007 chia hết cho 3 nên n2+2006 là hợp số