Giá trị nhỏ nhất của biểu thức A=\(x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)là?
CHỈ CHO MÌNH CÁCH LÀM VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bản rút gọn biểu thức trên A =\(x-\sqrt{x}+2\)
=\(x-2\sqrt{x}\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)
= \(\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\)
vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)với mọi x
<=> \(\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)voi mọi x
<=> A \(\ge\)7/4
=> min A = 7/4
dau = xay ra <=> \(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
\(ĐKXĐ:\) \(\hept{\begin{cases}\sqrt{x}-1\ne0\\\sqrt{x}\ge0\\x-\sqrt{x}+1\ne0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\) ( vì \(x-\sqrt{x}+1>0\) )
Ta có:
\(A=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1=x-\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x^3}+1}{x-\sqrt{x}+1}+1\)
\(=x-2\sqrt{x}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1=x-2\sqrt{x}+\sqrt{x}+1+1\)
nên \(A=x-\sqrt{x}+2=x-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}+\frac{7}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Vậy, \(A_{min}=\frac{7}{4}\) khi \(x=\frac{1}{4}\)
Điều kiện xác định của A : \(x\ge1\). Nhận xét : A > 0
Xét : \(A^2=2x+7+2\sqrt{\left(x+8\right)\left(x-1\right)}\)
Vì \(x\ge1\)nên \(2x+7\ge9\) , \(2\sqrt{\left(x+8\right)\left(x-1\right)}\ge0\)
Suy ra \(A^2\ge9\Rightarrow A\ge3\)(vì A > 0)
Dấu "=" xảy ra khi x = 1
Vậy Min A = 3 tại x = 1