K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

Yamate học ngu hay hoi

13 tháng 12 2023

Ghughi

4 tháng 1 2015

tất nhiên câu a là hợp số rồi!

vì nếu n=3k+1 thì n^2 + 2006=9k^2+6k+2007 chia hết cho 3

nếu n=3k+2 thì n^2 + 2006=9k^2+12k+2010 chia hết cho 3

 

4 tháng 1 2015

làm tương tự câu a thì cũng đc (p+5)x(p+7) chia hết cho 3 thôi!

nếu p=4k+1 thì (p+5)x(p+7)=(4k+6)x(4k+8) chia hết cho 8

nếu p=4k+3 tương tự.

=> (p+5)x(p+7) chia hết cho 8

do UCNN(8,3)=1 => đpcm

11 tháng 2 2016

bai toan nay kho qua

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
a. 

$2n^2+n-6=n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1$ là ước của $6$

Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$

b.

Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$

Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$

Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$

Suy ra $p^2-1$ luôn chia hết cho $3$ (*)

Mặt khác:

$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$

$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)

Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.

8 tháng 2 2021

Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

Vì a,b là các số nguyên tố lớn hơn 3

=> a,b đều lẻ

=> \(\hept{\begin{cases}\left(a-b\right)⋮2\\\left(a+b\right)⋮4\end{cases}}\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)⋮8\)

Ta xét 2 số a,b trong 2 TH sau:

Vì a,b không chia hết cho 3 nên

Nếu a,b cùng dư khi chia cho 3 => a-b chia hết cho 3

Nếu a,b khác dư khi chia cho 3 => a+b chia hết cho 3

=> \(\left(a-b\right)\left(a+b\right)\) luôn chia hết cho 3

Từ 2 điều trên => \(a^2-b^2⋮24\)