\(2^{x-1}.2^x.2^{x+1}=112\)
ai trl đc cho 1 coin :v
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left|x-1\right|\ge0;\forall x\)
\(\left|x+2\right|\ge0;\forall x\)
\(\left|x-3\right|\ge0;\forall x\)
\(\left|x+4\right|\ge0;\forall x\) ......
Cộng tất cả ta được:
\(\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+...+\left|x-9\right|\ge0\)
\(\Rightarrow Min_T=0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\\x=-4.....\end{matrix}\right.\)
-Sửa đề: x,y nguyên.
\(x-\dfrac{1}{y}-\dfrac{4}{xy}=-1\left(x\ne0;y\ne0;x\ne-1\right)\)
\(\Rightarrow x-\dfrac{1}{y}-\dfrac{4}{xy}+1=0\)
\(\Rightarrow\dfrac{x^2y}{xy}-\dfrac{x}{xy}-\dfrac{4}{xy}+\dfrac{xy}{xy}=0\)
\(\Rightarrow x^2y-x-4+xy=0\)
\(\Rightarrow xy\left(x+1\right)=x+4\)
\(\Rightarrow y=\dfrac{x+4}{x\left(x+1\right)}\)
-Vì x,y nguyên:
\(\Rightarrow\left(x+4\right)⋮\left[x\left(x+1\right)\right]\)
\(\Rightarrow\left(x+4\right)⋮x\) và \(\left(x+4\right)⋮\left(x+1\right)\)
\(\Rightarrow4⋮x\) và \(\left(x+1+3\right)⋮\left(x+1\right)\)
\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(3⋮\left(x+1\right)\)
\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(x+1\in\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(x\in\left\{0;-2;2;-4\right\}\)
\(\Rightarrow x\in\left\{2;-2;-4\right\}\)
*\(x=2\Rightarrow y=\dfrac{2+4}{2.\left(2+1\right)}=1\)
\(x=-2\Rightarrow y=\dfrac{-2+4}{-2.\left(-2+1\right)}=1\)
\(x=-4\Rightarrow y=\dfrac{-4+4}{-4.\left(-4+1\right)}=0\left(loại\right)\)
-Vậy các cặp số (x,y) là: \(\left(2,1\right);\left(-2,1\right)\)
\(x^2+4x+5=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1\)
Ta có:
\(\left(x+2\right)^2\text{≡}0,1\left(mod3\right)\)
\(1\text{≡}1\left(mod3\right)\)
\(\Rightarrow\left(x+2\right)^2+1\text{≡}1,2\left(mod3\right)\)
\(\Rightarrow\left(x+2\right)^2+1\) không chia hết cho 3
\(\Rightarrow x^2+4x+5\) không chia hết cho 3
a) \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)
b) \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)
\(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)
1-vui vẻ
2-thông minh
3-hoa hồng
4-kết bạn không
5-có ny chưa
6-yêu mọi người
7-tặng mình coin nhé vì mình mới đăng kí
trả lờ
4-ko
5-chưa
7-có làm thì ms có ăn
a) \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\) (ĐK: \(x\ne1,x\ge0\))
\(A=\left[\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\left[\dfrac{\left(x+2\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{2}{x+\sqrt{x}+1}\)
b) Ta có:
\(A=\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Mà: \(2>0\Rightarrow\dfrac{2}{\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{8}{3}\)
Dấu "=" xảy ra:
\(\dfrac{2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}=\dfrac{8}{3}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=2:\dfrac{8}{3}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(A_{max}=\dfrac{8}{3}\) khi \(x=-\dfrac{1}{2}\)
Tìm x?
ukm