K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2022

Tìm x?

23 tháng 3 2022

ukm

26 tháng 3 2022

Ta có:\(\left|x-1\right|\ge0;\forall x\)

        \(\left|x+2\right|\ge0;\forall x\)

          \(\left|x-3\right|\ge0;\forall x\)

           \(\left|x+4\right|\ge0;\forall x\) ......

Cộng tất cả ta được:

\(\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+...+\left|x-9\right|\ge0\)

\(\Rightarrow Min_T=0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\\x=-4.....\end{matrix}\right.\)

26 tháng 3 2022

Tìm x nữa

12 tháng 4 2022

-Sửa đề: x,y nguyên.

\(x-\dfrac{1}{y}-\dfrac{4}{xy}=-1\left(x\ne0;y\ne0;x\ne-1\right)\)

\(\Rightarrow x-\dfrac{1}{y}-\dfrac{4}{xy}+1=0\)

\(\Rightarrow\dfrac{x^2y}{xy}-\dfrac{x}{xy}-\dfrac{4}{xy}+\dfrac{xy}{xy}=0\)

\(\Rightarrow x^2y-x-4+xy=0\)

\(\Rightarrow xy\left(x+1\right)=x+4\)

\(\Rightarrow y=\dfrac{x+4}{x\left(x+1\right)}\)

-Vì x,y nguyên: 

\(\Rightarrow\left(x+4\right)⋮\left[x\left(x+1\right)\right]\)

\(\Rightarrow\left(x+4\right)⋮x\) và \(\left(x+4\right)⋮\left(x+1\right)\)

\(\Rightarrow4⋮x\) và \(\left(x+1+3\right)⋮\left(x+1\right)\)

\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(3⋮\left(x+1\right)\)

\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(x+1\in\left\{1;-1;3;-3\right\}\)

 

\(\Rightarrow x\in\left\{1;-1;2;-2;4;-4\right\}\) và \(x\in\left\{0;-2;2;-4\right\}\)

\(\Rightarrow x\in\left\{2;-2;-4\right\}\)

*\(x=2\Rightarrow y=\dfrac{2+4}{2.\left(2+1\right)}=1\)

\(x=-2\Rightarrow y=\dfrac{-2+4}{-2.\left(-2+1\right)}=1\)

\(x=-4\Rightarrow y=\dfrac{-4+4}{-4.\left(-4+1\right)}=0\left(loại\right)\)

-Vậy các cặp số (x,y) là: \(\left(2,1\right);\left(-2,1\right)\)

 

8 tháng 4 2022

\(x^2+4x+5=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\)

Ta có:

\(\left(x+2\right)^2\text{≡}0,1\left(mod3\right)\)

\(1\text{≡}1\left(mod3\right)\)

\(\Rightarrow\left(x+2\right)^2+1\text{≡}1,2\left(mod3\right)\)

\(\Rightarrow\left(x+2\right)^2+1\) không chia hết cho 3

\(\Rightarrow x^2+4x+5\) không chia hết cho 3

6 tháng 8 2018

a)  \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)

    \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)

b)  \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)

    \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)

   \(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)

27 tháng 11 2019

10,9,8,7

x-7/x-1<1

=>x-7/x-1=0

=>x-7=0

=>x=7

1 tháng 1

1 x-y 1/2= 3

1-vui vẻ

2-thông minh

3-hoa hồng

4-kết bạn không

5-có ny chưa

6-yêu mọi người

7-tặng mình coin nhé vì mình mới đăng kí

trả lờ

4-ko

5-chưa

7-có làm thì ms có ăn

29 tháng 8 2021

Vui vẻ
thông minh
hoa hồng
kết bạn không
có ny chưa
yêu mọi người
tặng mình coin nhé vì mình mới đăng kí và kết bạn với…(j nx hok bt trả lời sao luôn)

Trả l

ko

FA muôn năm

ko bao h

 

6 tháng 11 2023

có cái nịt

 

6 tháng 11 2023

hỏi như cứt

24 tháng 8 2023

a) \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\) (ĐK: \(x\ne1,x\ge0\))

\(A=\left[\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\left[\dfrac{\left(x+2\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(A=\dfrac{2}{x+\sqrt{x}+1}\)

b) Ta có:

\(A=\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

Mà: \(2>0\Rightarrow\dfrac{2}{\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{8}{3}\)

Dấu "=" xảy ra:

\(\dfrac{2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}=\dfrac{8}{3}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=2:\dfrac{8}{3}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(A_{max}=\dfrac{8}{3}\) khi \(x=-\dfrac{1}{2}\)

24 tháng 8 2023