tìm x biết
\(\sqrt{x-2}=12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu chưa quen giải toán căn thức, em tìm ĐKXĐ cho x, rồi đặt \(\sqrt{x}=t\ge0\Rightarrow x=t^2\) rồi thế vào giải là nó ra 1 pt bình thường theo biến t thôi
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(x+3\right)^2}=12\)
=>\(\left|x+3\right|=12\)
=>\(\left[{}\begin{matrix}x+3=12\\x+3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-15\end{matrix}\right.\)
b: ĐKXĐ: x>=1
\(\sqrt{25x-25}-\sqrt{9x-9}=10\)
=>\(5\sqrt{x-1}-3\sqrt{x-1}=10\)
=>\(2\sqrt{x-1}=10\)
=>x-1=25
=>x=26(nhận)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-4x+4}=7\)
=>\(\sqrt{\left(x-2\right)^2}=7\)
=>|x-2|=7
=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)
b: ĐKXĐ: x>=-3
\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)
=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)
=>\(3\sqrt{x+3}=6\)
=>\(\sqrt{x+3}=2\)
=>x+3=4
=>x=1(nhận)
a)
\(\sqrt{9x^2}=12\\ < =>\left(\sqrt{9x^2}\right)^2=12^2\\ < =>9x^2=144\\ < =>x^2=16\\ < =>\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
b)
\(\sqrt{25x^2}=\left|-50\right|\\ < =>\sqrt{25x^2}=50\left(vì-50< 0\right)\)
\(< =>\left(\sqrt{25x^2}\right)^2=50^2\\ =>25x^2=2500\\ < =>x^2=100\\ < =>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-9\right)^2-2\left(x-9\right)+1=0\\ \Leftrightarrow\left(x-9-1\right)^2=0\Leftrightarrow x=10\\ b,Sửa:49x^2-14x\sqrt{5}+5=0\\ \Leftrightarrow\left(7x-\sqrt{5}\right)^2=0\Leftrightarrow x=\dfrac{\sqrt{5}}{7}\)
\(\sqrt{X^2}\) =I X I
=>I X I +I X I =12 =>2IxI=12
=>I x I=6
=>x=6 hoặc x=-6