K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

x + 2617 x 5 = 22219 
x + 2617 = 22219 : 5
x + 2617 = 4443,8
x = 4443,8 - 2617
x = 1826,8

( x - 9587 ) : 8 = 1415
( x - 9587 ) = 1415 x 8
( x - 9587 ) = 11320
x = 11320 + 9587
x = 20907

28 tháng 7 2016

x + 2617x 5 = 22219 

x + 2617 = 22219 : 5

x + 2617 = 4443,8

x = 4443,8 - 2617

x = 1826,8

( x - 9587) : 8 =  1415

( x - 9587 ) = 1415 x 8

( x - 9587 ) = 11320

x = 11320 + 9587

x = 20907

Chúc bạn học tốt!

a: \(=\dfrac{2^{13}\cdot5^7\left(2^{17}+5^{20}\right)}{2^{10}\cdot5^7\left(2^{17}+5^{20}\right)}=2^3\)

b: \(M=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)

\(=3^{2\cdot1\cdot13\cdot12}=3^{312}\)

NV
10 tháng 4 2020

Xét hàm \(f\left(t\right)=\frac{ln\left(a^t+b^t\right)}{t}\) với \(t>0\)

\(f'\left(t\right)=\frac{t.\frac{a^t.lna+b^t.lnb}{a^t+b^t}-ln\left(a^t+b^t\right)}{t^2}=\frac{a^tlna^t-a^tln\left(a^t+b^t\right)+b^tlnb^t-b^tln\left(a^t+b^t\right)}{\left(a^t+b^t\right)t^2}\)

\(=\frac{a^t.\left(lna^t-ln\left(a^t+b^t\right)\right)+b^t\left(lnb^t-ln\left(a^t+b^t\right)\right)}{\left(a^t+b^t\right)t^2}< 0\)

\(\Rightarrow f\left(t\right)\) nghịch biến \(\Leftrightarrow f\left(x\right)< f\left(y\right)\Leftrightarrow x>y>0\)

\(\Leftrightarrow\frac{ln\left(a^x+b^x\right)}{x}< \frac{ln\left(a^y+b^y\right)}{y}\)

\(\Leftrightarrow y.ln\left(a^x+b^x\right)< x.ln\left(a^y+b^y\right)\)

\(\Leftrightarrow ln\left(a^x+b^x\right)^y< ln\left(a^y+b^y\right)^x\)

\(\Leftrightarrow\left(a^x+b^x\right)^y< \left(a^y+b^y\right)^x\)

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

17 tháng 1 2019

a, Ta có: \(2\left(x^8+y^8\right)\ge\left(x^3+y^3\right)\left(x^5+y^5\right)\)

\(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)

Ta CM: \(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)

Áp dụng bđt Cô si:

\(x^8+x^8+x^8+x^8+x^8+y^8+y^8+y^8\ge8x^5y^3\) (*)

Tương tự, \(5y^3+3x^3\ge8x^3y^5\) (**)

Từ (*), (**) \(\Rightarrowđpcm\)

10 tháng 9 2018

bạn vào loigiaihay rồi chọn toán lớp 8 rồi chọn đẳng thức đáng nhớ

10 tháng 9 2018

dễ mà áp dụng hết hằng đẳng thức nếu bạn thuộc hằng đẳng thức mik chỉ làm mỗi bài 1 ý nha xong dựa vô mà làm

\(1a.\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2\)

                                   \(=4y^2+12xy+9y^2\)

\(2a.x^2-6x+9\)

\(=x^2-2.x.3+3^2\)

\(=\left(x-3\right)^2\)