K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2022
Không cân ok
28 tháng 7 2021

Vì tam giác ABC cân tại A có đường cao AH nên D là trung điểm BC

Từ C kẻ đường thẳng vuông góc với BC cắt AB tại G

\(\Rightarrow CG\parallel AD\) mà D là trung điểm BC \(\Rightarrow A\) là trung điểm BG

nên AD là đường trung bình tam giác BCG \(\Rightarrow AD=\dfrac{CG}{2}\)

\(\Rightarrow2AD=CG\Rightarrow4AD^2=CG^2\)

tam giác BCG vuông tại C có đường cao CF nên áp dụng hệ thức lượng

\(\Rightarrow\dfrac{1}{BC^2}+\dfrac{1}{CG^2}=\dfrac{1}{CF^2}\Rightarrow\dfrac{1}{BC^2}+\dfrac{1}{4AD^2}=\dfrac{1}{CF^2}\)

undefined

3 tháng 5 2021

đó nha bn

3 tháng 5 2021

a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)

Do đó: tg HDB đồng dạng tg DCA (g.g)

Suy ra: HD/DC=BD/DA-> bd*dc=dh*da

b, HD/HA=SBHC/SABC

HE/BE=SAHC/SABC

HF/CF=SHAB/SABC

HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1

a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHFA~ΔHDC

=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)

=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)

c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

nên AFHE là tứ giác nội tiếp

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)

mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)

nên \(\widehat{EFH}=\widehat{DFH}\)

=>FH là phân giác của góc EFD

Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)

mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)

nên \(\widehat{FEH}=\widehat{DEH}\)

=>EH là phân giác của góc FED

Xét ΔFED có

EH,FH là các đường phân giác

Do đó: H là giao điểm của ba đường phân giác trong ΔFED

25 tháng 4 2021

Xét ΔHDB VÀ ΔHEA, có:

\(\widehat{BHD}\) = \(\widehat{EHA}\)( đối đỉnh)

\(\widehat{BDH}\) = \(\widehat{HEA}\) = 90°( giả thiết )

Do đó ΔHDB ∞ ΔHEA

➜ \(\dfrac {HD}{HE}\) = \(\dfrac{HB}{HA}\) ➜ HA . HD = HB . HE

4 tháng 9 2020

A B C D E F H

Xét ∆ABE và ∆ACF có:

\(\widehat{A}\left(chung\right)\)

\(\widehat{AEB}=\widehat{AFC}\left(=90^0\right)\)

\(\Rightarrow\)∆ABE ~ ∆ACF (g-g)

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)

Xét ∆AEF và ∆ABC có:

\(\frac{AE}{AB}=\frac{AF}{AC}\left(cmt\right)\)

\(\widehat{A}\left(chung\right)\)\

\(\Rightarrow\)∆AEF ~ ∆ABC (đpcm)

Ta có: \(\tan B=\frac{ÁD}{DB};\tan C=\frac{AD}{DC}\)

Xét ∆ADC và ∆BDH có:

\(\widehat{HBD}=\widehat{CAD}\)( cùng phụ với \(\widehat{C}\))

\(\widehat{ADC}=\widehat{BDH}\left(=90^0\right)\)

\(\Rightarrow\)∆ADC ~ ∆ BDH (g-g)

\(\Rightarrow\frac{AD}{DC}=\frac{BD}{DH}\)

\(\Rightarrow\tan B\cdot\tan C=\frac{AD}{DB}\cdot\frac{AD}{DC}=\frac{AD}{DB}\cdot\frac{BD}{DH}=\frac{AD}{DH}\)(đpcm)