K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

Ta có : 

x - 2x + 22x - 23x + ... + 22010x = 1 + 22015

x . ( 1 - 2 + 22 - 23 + ... + 22010) = 1 + 22015

Đặt \(A=1-2+2^2-2^3+..+2^{2010}\)

\(2A=2-2^2+2^3-2^4+...+2^{2011}\)

\(2A+A=\left(2-2^2+2^3-2^4+...+2^{2011}\right)+\left(1-2+2^2-2^3+...+2^{2010}\right)\)

\(3A=2^{2011}+1\)

\(A=\left(2^{2011}+1\right):3\)

\(\Rightarrow x\left[\left(2^{2011}+1\right):3\right]=1+2^{2015}\)

Mk chỉ làm được đến đây thui phần sau bạn tự làm được ko

Ủng hộ mk nha !!! ^_^

29 tháng 7 2016

Ta có : 

x - 2x + 22x - 23x + ... + 22010x = 1 + 22015

x . ( 1 - 2 + 22 - 23 + ... + 22010) = 1 + 22015

Đặt \(A=1-2+2^2-2^3+..+2^{2010}\)

\(2A=2-2^2+2^3-2^4+...+2^{2011}\)
\(2A+A=\left(2-2^2+2^3-2^4+...+2^{2011}\right)+\left(1-2+2^2-2^3+...+2^{2010}\right)\)

\(3A=2^{2011}+1\)

\(A=\left(2^{2011}+1\right):3\)

28 tháng 6 2021

1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)

2.\(sin^22x+cos^23x=1\)

\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)

\(\Leftrightarrow cos6x=cos4x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)

Vậy...

3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)

\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)

\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))

Vậy...

4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)

\(\Leftrightarrow cos2x+cos4x=1+cos6x\)

\(\Leftrightarrow2cos3x.cosx=2cos^23x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy...

26 tháng 10 2021

undefined

12 tháng 9 2016

a)\(pt\Leftrightarrow\frac{1-cos8x}{2}+\frac{1-cos6x}{2}=\frac{1-cos4x}{2}+\frac{1-cos2x}{2}\)

\(\Leftrightarrow cos2x+cos4x=cos6x+cos8x\)

\(\Leftrightarrow2cos3x\cdot cosx=2cos7x\cdot cosx\)

\(\Leftrightarrow2cos\left(cos3x-cos7x\right)=0\)

\(\Leftrightarrow2cosx\cdot\left(-2\right)\cdot sin5x\cdot sin\left(-2x\right)=0\)

\(\Leftrightarrow cosx\cdot sin2x\cdot sin5x=0\)

\(\Leftrightarrow sin2x\cdot sin5x=0\)(do sin2x=0 <=>2sinx*cosx=0 gồm th cosx=0 r`)

\(\Leftrightarrow\left[\begin{array}{nghiempt}sin2x=0\\sin5x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{k\pi}{2}\\x=\frac{k\pi}{5}\end{array}\right.\)\(\left(k\in Z\right)\)

12 tháng 9 2016

b)\(pt\Leftrightarrow1-cos2x+1-cos4x=1+cos6x+1+cos8x\)

\(\Leftrightarrow cos2x+cos8x+cos4x+cos6x=0\)

\(\Leftrightarrow cos10x\cdot cos6x+cos10x\cdot cos2x=0\)

\(\Leftrightarrow cos10x\left(cos6x+cos2x\right)=0\)

\(\Leftrightarrow cos10x\cdot cos8x\cdot cos4x=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cos10x=0\\cos8x=0\\cos4x=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{16}+\frac{k\pi}{8}\\x=\frac{\pi}{8}+\frac{k\pi}{4}\end{array}\right.\)

19 tháng 8 2019
https://i.imgur.com/KATLCup.jpg
19 tháng 8 2019
https://i.imgur.com/C3DgdmP.jpg
NV
14 tháng 8 2020

Do \(\left\{{}\begin{matrix}cos^2x\ge0\\cos^22x\ge0\\cos^23x\ge0\end{matrix}\right.\)

\(\Rightarrow cos^2x+cos^22x+cos^23x\ge0\) với mọi x

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}cosx=0\\cos2x=0\\cos3x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx=0\\2cos^2x-1=0\\cos3x=0\end{matrix}\right.\)

Pt vô nghiệm (do \(cosx=0\Rightarrow2cos^2x-1=-1\ne0\))

NV
6 tháng 9 2020

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x=\frac{1}{2}+\frac{1}{2}cos4x+\frac{1}{2}+\frac{1}{2}cos8x\)

\(\Leftrightarrow cos8x+cos2x+cos6x+cos4x=0\)

\(\Leftrightarrow2cos5x.cos3x+2cos5x.cosx=0\)

\(\Leftrightarrow cos5x\left(cos3x+cosx\right)=0\)

\(\Leftrightarrow2cos5x.cos2x.cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos5x=0\\cos2x=0\\cosx=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{10}+\frac{k\pi}{5}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)