K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

-x^2+4x+1

=-x2+4x-4+5

=-(x-2)2+5\(\le\)0+5=5

Dấu = khi x=2

Vậy Tmax=5 khi x=2

DD
26 tháng 6 2021

\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)

Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)

Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).

10 tháng 7 2021

undefined

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

31 tháng 1 2022

là \(4x+\dfrac{1}{x^2}+2x+2\)  hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0

31 tháng 1 2022

cái phía sau nha bạn ơi 

1 tháng 12 2021

\(A=\dfrac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\\ \Leftrightarrow Ax^2-4x+A-3=0\)

Coi đây là PT bậc 2 ẩn x thì PT có nghiệm

\(\Leftrightarrow\Delta=16-4A\left(A-3\right)\ge0\\ \Leftrightarrow16-4A^2+12A\ge0\\ \Leftrightarrow-A^2+3A+4\ge0\\ \Leftrightarrow-1\le A\le4\)

Vậy \(A_{max}=4;A_{min}=-1\)

\(A_{max}=4\Leftrightarrow\dfrac{4x+3}{x^2+1}=4\Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\\ A_{min}=-1\Leftrightarrow\dfrac{4x+3}{x^2+1}=-1\Leftrightarrow x^2+1=-4x-3\Leftrightarrow x^2+4x+4=0\\ \Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)

8 tháng 10 2016

a) \(A=4x^2-4x-1\)

\(=\left(2x\right)^2-2.\left(2x\right).1+1-1-1\)

\(=\left(2x-1\right)^2-2\)

\(\Rightarrow Min_A=-2\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy ...

b) \(B=\frac{1}{4}x^2+x-1\)

\(=\left(\frac{1}{2}x\right)^2+2.\left(\frac{1}{2}x\right)+1-1-1\)

\(=\left(\frac{1}{2}x+1\right)^2-2\)

\(\Rightarrow Min_B=-2\)

\(\Leftrightarrow x=-2\)

Vậy ...

8 tháng 10 2016

a) \(A=4x^2-4x-1\)

\(A=4x^2-4x+1-2\)

\(A=\left(2x-1\right)^2-2\) 

Có: \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2-2\ge-2\)

Dấu '=' xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy: \(Min_A=-2\) tại \(x=\frac{1}{2}\)

b) \(B=\frac{1}{4}x^2+x-1\)

\(B=\frac{1}{4}x^2+x+1-2\)

\(B=\left(\frac{1}{2}x+1\right)^2-2\)

Có: \(\left(\frac{1}{2}x+1\right)^2\ge0\Rightarrow\left(\frac{1}{2}x+1\right)^2-2\ge-2\)

Dấu = xảy ra khi: \(\left(\frac{1}{2}x+1\right)^2=0\Rightarrow\frac{1}{2}x+1=0\Rightarrow x=-\frac{1}{2}\)

Vậy: \(Min_B=-2\) tại \(x=-\frac{1}{2}\)

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)