Tìm x , y , z biết:
\(\frac{x}{10}\)= \(\frac{y}{6}\)=\(\frac{z}{21}\)va 5x + y - 2z = 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}\)\(\Rightarrow\begin{cases}x=20\\y=12\\z=42\end{cases}\)
Vậy x=20;y=12;z=42
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> x = 20
y = 12
z = 42
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy ...
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....
b. Câu hỏi của Nguyen Hai Bang - Toán lớp 7 - Học toán với OnlineMath
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(.\frac{x}{10}=2\Rightarrow x=20\)
\(.\frac{y}{6}=2\Rightarrow y=12\)
\(.\frac{z}{21}=2\Rightarrow z=42\)
Vậy............
a) Giải:
Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{-28}{14}=-2\)
+) \(\frac{5x}{50}=-2\Rightarrow x=-20\)
+) \(\frac{y}{6}=-2\Rightarrow y=-12\)
+) \(\frac{2z}{42}=-2\Rightarrow z=-42\)
Vậy x = -20, y = -12, z = -42
b) Giải:
Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)
+) \(\frac{x}{10}=8\Rightarrow x=80\)
+) \(\frac{y}{15}=8\Rightarrow y=120\)
+) \(\frac{z}{21}=8\Rightarrow z=168\)
Vậy x = 80, y = 120, z = 168
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)
\(\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=-\frac{28}{14}=-2\)
\(\Rightarrow\begin{cases}\frac{x}{10}=-2\rightarrow x=\left(-2\right)\cdot10=-20\\\frac{y}{6}=-2\rightarrow y=\left(-2\right)\cdot6=-12\\\frac{z}{21}=-2\rightarrow z=\left(-2\right)\cdot21=-42\end{cases}\)
b) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y-z}{10+15-21}=\frac{32}{4}=8\)
\(\Rightarrow\begin{cases}\frac{x}{10}=8\rightarrow x=8\cdot10=80\\\frac{y}{15}=8\rightarrow y=8\cdot15=120\\\frac{z}{21}=8\rightarrow z=8\cdot21=168\end{cases}\)
\(\frac{x}{10}\)= \(\frac{5x}{50}\)
\(\frac{z}{21}\)= \(\frac{2z}{42}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}\)= \(\frac{y}{6}\)= \(\frac{2z}{42}\)= \(\frac{5x+y-2z}{50+6-42}\)= \(2\)
Vậy :
\(\frac{x}{10}\)= 2 nên x=20
\(\frac{y}{6}\)= 2 nên y= 12
\(\frac{z}{21}\)= 2 nên z= 42
Ta có :
\(\frac{x}{10}\)=\(\frac{y}{6}\)=\(\frac{z}{21}\)=\(\frac{5x}{50}\)=\(\frac{y}{6}\)=\(\frac{2z}{42}\)=\(\frac{5x+y-2z}{50+6-21}\)=\(\frac{28}{14}\)=2
=>\(\frac{x}{10}\)=2 => x=20
=>\(\frac{y}{6}\)=2 => y=12
=>\(\frac{z}{21}\)=2 => z=42
Vậy x=20,y=12,z=42