Chứng minh:
a) x2+2xy+1+y2 >0 với mọi x,y thuộc R
b) x-x2-1 <0 với mọi x thuộc R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
x^2+4y^2+z^2-2x-6z+8y+15
=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9
=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1
=(x-1)^2+4(y+1)^2+(z-3^)2+1
Ta thấy:(x−1)^2≥0
4(y+1)^2≥0
(z−3)^ 2≥0
{(x−1)^24(y+1)^2(z−3)^2≥0
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)
Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
\(x^2-2xy+y^2+1=\left(x^2-2xy+y^2\right)+1=\left(x-y\right)^2+1>0\) nhé!
\(x-x^2-1=-\left(x^2-x+1\right)=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\)
a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)
nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)
Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)
b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)
Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)
a) x2 + 2xy + 1 +y2 = (x2+2xy+y2)+1=(x+y)2+1 mà (x+y)2 luôn lớn hơn hoặc bằng 0 với mọi x,y
=>x2+2xy+1+y2>1>0
b)x-x2-1=-(x2-x+1)=-((x2-2.x.0,5+0,25)+0,75)=-((x-0,5)2+0,75) mà (x-0,5)2 luôn lớn hơn hoặc bằng 0 vớ mọi x
=>x-x2-1<0
TƯỞNG KHÔNG DỄ NHƯNG DỄ KHÔNG TƯỞNG!