K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

Đề đúng : Cho \(a=xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) , \(b=x\sqrt{1+y^2}+y\sqrt{1+x^2}\). Hãy tính b theo a, biết x,y> 0

Giải : 

Ta có : \(a^2=\left(xy\right)^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=x^2+y^2+2x^2y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a^2-1\)

Vậy \(b=\sqrt{a^2-1}\)(vì x,y> 0 nên b > 0)

25 tháng 7 2016

khó quá đi em mới học lớp 6 thôi hu hu 

<img class="irc_mi i5I_Ps3Xg92k-pQOPx8XEepE" alt="" style="margin-top: 100px;" src="http://dungfacebook.net/wp-content/uploads/2015/11/622.jpg" width="304" height="196">

NV
12 tháng 8 2021

\(y^2=a^2\left(1+b^2\right)+b^2\left(1+a^2\right)+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(=a^2+b^2+2a^2b^2+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(x^2=a^2b^2+\left(1+a^2\right)\left(1+b^2\right)+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)

\(=a^2+b^2+2a^2b^2+2ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}+1\)

\(\Rightarrow y^2+1=x^2\)

\(\Rightarrow y^2=x^2-1\)

\(\Rightarrow y=\sqrt{x^2-1}\)

1 tháng 12 2017

Xét \(a^2=x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+\left(1+x^2\right)\left(1+y^2\right)\)

\(b^2=x^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+y^2\left(1+x^2\right)\)

\(\Rightarrow b^2=a^2-1\)

Nếu \(x>0,y>0\Rightarrow b>0\Rightarrow b=\sqrt{a^2-1}\)

Nếu \(x< 0,\)\(y< 0\)\(\Rightarrow b< 0\Rightarrow b=-\sqrt{a^2-1}\)

4 tháng 9 2016

Ta có a= 2x2 y+ x2 + y2 + 1 + \(2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

b= 2x2 y2 + x2 + y+ \(2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

Từ đó => a= b+ 1

=> b = \(\sqrt{a^2-1}\)

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

31 tháng 7 2018

Ta có:

\(a^2=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(\Rightarrow a^2=x^2+y^2+x^2y^2+1\)

\(b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(\Rightarrow b^2=x^2+y^2+x^2y^2\)

\(\Rightarrow b^2=a^2-1\)

Nếu \(x,y>0\Rightarrow b>0\Rightarrow b=\sqrt{a^2-1}\)

Nếu \(x,y< 0\Rightarrow b< 0\Rightarrow b=-\sqrt{a^2-1}\)

8 tháng 6 2018

Ta có:

\(\hept{\begin{cases}a^2=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\\b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\end{cases}}\)

\(\Rightarrow b^2-a^2=-1\)

\(\Leftrightarrow b^2=a^2-1\)

12 tháng 7 2021

Bài 1.

Ta có:\(\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)

\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)\)

\(\Rightarrow y+\sqrt{y^2+2020}=\sqrt{x^2+2020}-x\)

\(\Rightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)   (1)

Ta có:\(\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)

\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)\)

\(\Rightarrow x+\sqrt{x^2+2020}=\sqrt{y^2+2020}-y\)

\(\Rightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)          (2)

Cộng vế với vế của (1) và (2) ta có:

\(2\left(x+y\right)=\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{x^2+2020}-\sqrt{y^2+2020}\)

\(\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)

Bài 2: 

Ta có: (2a+1)(2b+1)=9

nên \(2b+1=\dfrac{9}{2a+1}\)

\(\Leftrightarrow2b=\dfrac{9}{2a+1}-\dfrac{2a+1}{2a+1}=\dfrac{8-2a}{2a+1}\)

\(\Leftrightarrow b=\dfrac{8-2a}{4a+2}=\dfrac{4-a}{2a+1}\)

\(\Leftrightarrow b+2=\dfrac{4-a+4a+2}{2a+1}=\dfrac{3a+6}{2a+1}\)

Ta có: \(A=\dfrac{1}{a+2}+\dfrac{1}{b+2}\)

\(=\dfrac{1}{a+2}+\dfrac{2a+1}{3a+6}\)

\(=\dfrac{3+2a+1}{3a+6}\)

\(=\dfrac{2a+4}{3a+6}=\dfrac{2}{3}\)

24 tháng 9 2018

\(\hept{\begin{cases}a^2=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\\b^2=y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\end{cases}}\)

\(\Rightarrow a^2-b^2=1\)

\(\Rightarrow a^2=1+b^2\)