K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

A B C D H E M

a) Xét tam giác ABC ta có

BC2=52=25

AB2+AC2=25

->BC2=AC2+AB2->tam giác ABC vuông tại A ( đinh lý pitago đảo)

b) xét tam giác BAD và tam giác EDA ta có

BD=AE (gt)

AD=AD ( cạnh chung)

góc BDA = góc EAD ( 2 góc sole trong và AE//BD)

-> tam giac BAD= tam giac EDA (c-g-c)

=> AB=DE ( 2 cạnh tương ứng)

c)ta có

góc CAD+ góc BAD =90 (2 góc kề phụ)

góc CDA+ góc DAH=90 ( tam giác ADH vuông tại H)

góc BAD=góc DAH ( AD là tia p./g góc BAH)

->góc CAD=góc CDA 

-> tam giác ADC cân tại C

d) Xét tam giác ADC cân tại C ta có

CM là đường trung tuyến ( M là trung điểm AD)

-> CM là đường cao

ta có

góc BAD= góc ADE (  tam giác BAD= tam giác EDA)

mà 2 góc nằm ở vị trí sole trong nên AB//DE

mặt khác AB vuông góc AC (  tam giác ABC vuông tại A)

do đó DE vuông góc AC

Gọi F là giao điểm DE và AC

Xét tam giác CAD ta có

DF là đường cao (DE vuông góc AC tại F)

AH là đường cao (AH vuông góc BC)

AH cắt DE tại I (gt)

-> I là trực tâm 

mà CM cũng là đường cao tam giác ACD (cmt)

nên CM đi qua I

-> C,M ,I thẳng hàng

a: \(BC=\sqrt{34}\left(cm\right)\)

b: Xét ΔBCD có 

CA là đường cao

CA là đường trung tuyến

Do đó:ΔCBD cân tại C

c: Xét ΔCKA vuông tại K và ΔCHA vuông tại H có

CA chung

\(\widehat{KCA}=\widehat{HCA}\)

Do đó: ΔCKA=ΔCHA

Suy ra: CK=CH

d: Xét ΔCBD có CK/CD=CH/CB

nên HK//BD

22 tháng 11 2021

a. \(BC^2=AB^2+AC^2\) nên ABC vuông tại A

b. Hệ thức lượng: \(AH=\dfrac{AB\cdot AC}{BC}=2,4\left(cm\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx37^0\)

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

24 tháng 2 2020

Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!

Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)

và \(\widehat{CDA}=90^0-\widehat{HAD}\)

Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)

Tương tự ta có: AB = EB

\(\Rightarrow AB+AC=EB+DC\)

\(=ED+DB+DC=DE+BC\)

\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)

Vậy DE = 2 cm

2 tháng 2 2020

A B C H D E

Ta có: \(\Delta\)ABC vuông tại A

=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)=  25 => BC = 5 (cm)

Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)

=> AH = 2,4  (cm)

Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)

=> BH = 5 - 3,2 = 1,8 ( cm )

AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2 

=> EC = 2 ( cm ) ; EH = 1,2 ( cm )

AD là phân giác ^BAH  => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8 

=> DH = 0,8 ( cm ) ; BD = 1( cm )

Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ

góc DAH+góc BDA=90độ

góc BAD=góc BDA

=>góc MAD=góc HAD

Xét ΔAHD và ΔAMD có

AH=AM

góc HAD=góc MAD

AD chung

=>ΔAHD=ΔAMD

=>góc AMD=90 độ

Xét ΔAMN vuông tại M và ΔAHC vuông tại H có

AM=AH

góc MAN chung

=>ΔAMN=ΔAHC

=>AN=AC

=>ΔANC cân tại A