(so sánh
a.3^34 va 5^20
b.7^15 va 17^20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(3^{34}=\left(3^{17}\right)^2=129140163^2\)
\(5^{20}=\left(5^{10}\right)^2=9765625^2\)
Vậy..........
Đùa chút thui
c,\(3^{23}=3^{21}.3^2=\left(3^3\right)^7.9=27^7.9\)
\(5^{15}=\)\(5^{14}.5=\left(5^2\right)^7.5=25^7.5\)
\(27^7>25^7\)và \(9>5\)
nên \(3^{23}>5^{15}\)
b,
5^299 < 5^300 = (5^2)^150 = 25^150
3^501 = (3^3)^167 = 27^167
=> 27^167 > 25^150 => 3^501 > 5^299
a) \(\dfrac{-1}{20}=\dfrac{-7}{140}\)
\(\dfrac{5}{7}=\dfrac{100}{140}\)
mà -7<100
nên \(-\dfrac{1}{20}< \dfrac{5}{7}\)
b) \(\dfrac{216}{217}< 1\)
\(1< \dfrac{1164}{1163}\)
nên \(\dfrac{216}{217}< \dfrac{1164}{1163}\)
c) \(\dfrac{-12}{17}=\dfrac{-180}{255}\)
\(\dfrac{-14}{15}=\dfrac{-238}{255}\)
mà -180>-238
nên \(-\dfrac{12}{17}>\dfrac{-14}{15}\)
d) \(\dfrac{27}{29}>0\)
\(0>-\dfrac{2727}{2929}\)
nên \(\dfrac{27}{29}>-\dfrac{2727}{2929}\)