K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2015

Câu A Ta có \(9^{20}=9^{20}\)\(=\left(3^2\right)^{20}=3^{40}\)

         \(26^{13}<27^{13}=\left(3^3\right)^{13}=3^{39}\)

Vì \(3^{40}>3^{39}\)

\(\Rightarrow9^{20}>26^{13}\)

Câu B bạn Tự giải nhé !

 

13 tháng 3 2020

783286 

13 tháng 3 2020

783286

Để 78a2b6 chia hết cho 36 thì 78a2b6 chia hết cho 4 và 9

Để 78a2b6 chia hết cho 4 thì 78a2b6 có 2 chữ số tận cùng chia hết cho 4 

Để 78a2b6 chia hết cho 9 thì 78a2b6 có tổng chia hết cho 9

\(78a2b6⋮36\Leftrightarrow78a2b6⋮\left(4,9\right)\)         (4,9)=1

\(78a2b6⋮36\Leftrightarrow b6⋮4\)

\(\Rightarrow b=1;5;9\)

\(b=1\Rightarrow78a216⋮9\Leftrightarrow\left(7+8+a+2+1+6\right)⋮9\)

                                      \(\Leftrightarrow24+a⋮9\)

                                            \(\Leftrightarrow a=3\)

tương tự b=5 suy ra a =8

b=9 suy ra a = 4

Ta có:

\(\overline{78a2b6}⋮36\)

\(\Rightarrow\overline{78a2b6}⋮9;4\)

\(\overline{78a2b6}⋮4\Rightarrow b\in\left\{1;3;5;7;9\right\}\)

Xét \(b=1\)

\(\Rightarrow\overline{78a216}⋮9\Rightarrow\left(7+8+a+2+1+6\right)⋮9\Rightarrow\left(24+a\right)⋮9\Rightarrow\left(6+a\right)⋮9\Rightarrow6+a=9\Rightarrow a=3\)

Xét \(b=3\)

\(\Rightarrow\overline{78a236}⋮9\Rightarrow\left(7+8+a+2+3+6\right)⋮9\Rightarrow\left(26+a\right)⋮9\Rightarrow\left(8+a\right)⋮9\Rightarrow8+a=9\Rightarrow a=1\)

Xét \(b=5\)

\(\Rightarrow\overline{78a256}⋮9\Rightarrow\left(7+8+a+2+5+6\right)⋮9\Rightarrow\left(28+a\right)⋮9\Rightarrow\left(1+a\right)⋮9\Rightarrow1+a=9\Rightarrow a=8\)

Xét \(b=7\)

\(\Rightarrow\overline{78a276}⋮9\Rightarrow\left(7+8+a+2+7+6\right)⋮9\Rightarrow\left(30+a\right)⋮9\Rightarrow\left(3+a\right)⋮9\Rightarrow3+a=9\Rightarrow a=6\)

Xét \(b=9\)

\(\Rightarrow\overline{78a296}⋮9\Rightarrow\left(7+8+a+2+9+6\right)⋮9\Rightarrow\left(32+a\right)⋮9\Rightarrow\left(5+a\right)⋮9\Rightarrow5+a=9\Rightarrow a=4\)Vậy...

Ta có: 78a2b6⋮36

nên 78a2b6⋮9 và 78a2b6⋮4

Ta có: 78a2b6⋮9

nên 7+8+a+2+b+6⋮9

hay 23+a+b⋮9

Ta có: 78a2b6⋮4

nên b6⋮4

⇔b∈{1;3;5;7;9}

Thay b=1 vào số 78a2b6 ta được

78a216

mà 7+8+a+2+1+6⋮9

nên 24+a⋮9

mà a là số có 1 chữ số

hay a=3

Thay b=3 vào số 78a2b6, ta được

78a236

mà 78a236⋮9

nên 7+8+a+2+3+6⋮9

hay 26+a⋮9

mà a là số 1 chữ số

nên a=1

Thay b=5 vào số 78a2b6, ta được

78a256

mà 78a256⋮9

nên 7+8+a+2+5+6⋮9

hay 28+a⋮9

mà a là số có 1 chữ số

nên a=8

Thay b=7 vào số 78a2b6, ta được

78a276

mà 78a276⋮9

nên 7+8+a+2+7+6⋮9

hay 30+a⋮9

mà a là số có 1 chữ số

nên a=6

Thay b=9 vào số 78a2b6, ta được

78a296

mà 78a296⋮9

nên 7+8+a+2+9+6⋮9

hay 32+a⋮9

mà a là số có 1 chữ số

nên a=4

Vậy: (a,b)={(1;3); (3;1); (5;8); (7;6); (9;4)}

7 tháng 11 2023

bạn có thể cho đề bài rõ hơn đc ko? Với cả dấu của bạn là đấu chia hết hay chia. cái 78a2b6 có dấu gạch trên đầu ko z?

29 tháng 12 2019

tu de bai ta co \(\hept{\begin{cases}7+8+a+b+2+6⋮3.\left(1\right)\\a=4+b.\left(2\right)\end{cases}}\) 

the (2) vao (1) duoc \(\left(23+4+2b\right)⋮3\) <=> \(\left(27+2b\right)⋮3\)

=> \(2b⋮3\) (do 27 chia het cho 3) 

ma 2 ko chia het cho 3 => \(b⋮3\)

=> \(b\in\left\{0,3,6,9\right\}=>a\in\left\{4,7,10,13\right\}\Rightarrow\left(a;b\right)=\left(4;0\right),\left(7;3\right)\)

vay cac so a,b can tim la (4,0) , (7,3)

29 tháng 10 2016

a) (2223)111 và (3332)111

(2 . 111)3 và (3 . 111)2

8 . 1113 và 9 . 1112

888 . 1112 và 9 . 1112

Vậy: 222333 > 333222

29 tháng 10 2016

a) Ta có \(222^2=\left(2\cdot111\right)^{3\cdot111}=8^{111}\cdot\left(111^{111}\right)^2\cdot111^{111}\)

\(333^{222}=\left(3\cdot111\right)^{2\cdot111}=9^{111}\cdot\left(111^{111}\right)^2\)

\(\Rightarrow222^{333}>333^{222}\)

b) Để số \(\overline{1x8y2}⋮36\left(0\le x,y\le9,x,y\in N\right)\)

\(\Leftrightarrow\begin{cases}\left(1+x+8+y+2\right)⋮9\\\overline{y2}⋮4\end{cases}\)

\(\overline{y2}⋮4\Rightarrow y=\left\{1;3;5;7;9\right\}\)

\(\left(x+y+2\right)⋮9\Rightarrow x+y=7\) hoặc \(x+y=16\Rightarrow x=\left\{6;4;2;0;9;7\right\}\)

Vậy ta có các số: \(16812;14832;12852;10872;19872;17892\)

c) Ta có \(a>28\Rightarrow\left(2002-1960\right)⋮a\Rightarrow42⋮a\Rightarrow a=42\)