Cho 2m-1 là số nguyên tố , Chứng Minh rằng m cũng là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì p lớn hơn 3 nên p ko chia hết cho 3
=> ta có: p=3k+1 hoặc 3k+2
Xét p=3k+1=>p+2=3k+1+2=3.3(k+1) chia hết cho 3
=>p+2 là hợp số(vô lý)
=>p=3k+2
=>p+1=3k+3=3(k+1)
p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2
Vì (3,2)=1=>p+1 chia hết cho 6
TH1: p=3k+1
=>p+2=3k+3(loại)
=>p=3k+2 và p là số lẻ
p+1=3k+3=3(k+1) chia hết cho 3
p là số lẻ
=>p+1 chia hết cho 2
=>p+1 chia hết cho 6
Số nguyên tố > 3 chỉ có 2 thôi nên p= 2
thế số 2 vào p
Ta có: 7p+1 =7.2+1=14+1=15
15 chia hết cho 1;3;5 và 15 nên 15 là hợp số. ~_~
Do p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3
\(\Rightarrow\) p có dạng \(p=3k+1\) hoặc \(p=3k+2\) với k là số tự nhiên và \(k\ge1\)
Nếu \(p=3k+1\Rightarrow p+2=3k+3=3\left(k+1\right)⋮3\) là hợp số (ktm)
\(\Rightarrow p=3k+2\)
Khi đó \(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\) là hợp số (đpcm)