Tính Gt biểu thức:
\(3x^3-2y^3-6x^2y^2+xy\)
vs \(x=\frac{2}{3};y=\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3.\left(\frac{2}{3}\right)^2-2.\left(\frac{1}{2}\right)^3-6\left(\frac{2}{3}\right)^2\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)
\(=\frac{4}{3}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)
\(=\frac{3}{4}\)
Ta có: \(3x^3-2y^3-6x^2y^2+xy\)
\(=\left(3x^3-6x^2y^2\right)+\left(xy-2y^3\right)\)
\(=3x^2\left(x-2y^2\right)+y\left(x-2y^2\right)\)
\(=\left(x-2y^2\right)\left(3x^2+y\right)\)
\(=\left(\dfrac{2}{3}-2\cdot\dfrac{1}{4}\right)\cdot\left(3\cdot\dfrac{4}{9}+\dfrac{1}{2}\right)\)
\(=\left(\dfrac{2}{3}-\dfrac{1}{2}\right)\cdot\left(\dfrac{4}{3}+\dfrac{1}{2}\right)\)
\(=\dfrac{1}{6}\cdot\dfrac{11}{6}=\dfrac{11}{36}\)
a)B=3x3 -2y3-6x2y2+xy
B=(3x3-6x2y2)+(xy-2y3)
B=3x2(x-2y2)+y(x-2y2)
B=(x-2y2)(3x2+y)
tại x=\(\frac{2}{3}\)và y=\(\frac{1}{2}\)ta có B=(x-2y2)(3x2+y)=(\(\frac{2}{3}\)-2*\(\frac{1}{2}\)^2 )(3*\(\frac{2}{3}\)^2+\(\frac{1}{2}\))=\(\frac{1}{6}\)*\(\frac{11}{6}\)=\(\frac{11}{36}\)
b)C= 2x+xy2-x2y-2y
C=(2x-2y)+(xy2-x2y)
C=2(x-y)-xy(x-y)
C=(2-xy)(x-y)
tại x=\(-\frac{1}{2}\)và y=\(-\frac{1}{3}\)ta có C=(2-xy)(x-y)=(2-\(-\frac{1}{2}\)*\(-\frac{1}{3}\))(\(-\frac{1}{2}\)+\(\frac{1}{3}\))=\(\frac{-11}{36}\)