Chứng minh : 7/12<1/41+1/42+1/43+...+1/80 <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
=> ĐPCM
Bài 1:
Ta có: \(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
......
\(\frac{1}{99}>\frac{1}{100}\)
Công vế với vế lại ta được:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\) (1)
Lại có: \(\frac{1}{51}< \frac{1}{50}\)
\(\frac{1}{52}< \frac{1}{50}\)
.....
\(\frac{1}{100}< \frac{1}{50}\)
Cộng vế với vế lại ta được:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{50}{50}=1\) (2)
Từ (1)(2) => \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\) (đpcm)
Bài 2:
Đặt S = 1/41 + 1/42 +...+ 1/80
S có 40 số hạng,chia thành 4 nhóm,mỗi nhóm có 10 số hạng
Ta có:S = \(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\) + \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)+ \(\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)+ \(\left(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}\right)\)
=> S > \(\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)\)
=> S > \(\frac{10}{50}+\frac{10}{60}+\frac{10}{70}+\frac{10}{80}\)
=> S > \(\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)
Vậy \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{7}{12}\left(đpcm\right)\)
Đặt A=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....................+\frac{1}{80}\)(có 40 số hạng)
+)Ta có:A=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....................+\frac{1}{80}\)
=>A=\(\left(\frac{1}{41}+\frac{1}{42}+............................+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...............+\frac{1}{80}\right)\)
Có 20 số hạng Có 20 số hạng
\(>\left(\frac{1}{60}+\frac{1}{60}+....................+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+.............+\frac{1}{80}\right)\)
Có 20 số hạng Có 20 số hạng
=>A>\(20.\frac{1}{60}+20.\frac{1}{80}=\frac{1}{3}+\frac{1}{4}\)=\(\frac{7}{12}\)
=>A\(\frac{7}{12}\)(1)
+)Ta lại có:A= \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....................+\frac{1}{80}\) (có 40 số hạng)
\(< \left(\frac{1}{41}+\frac{1}{41}+....................+\frac{1}{41}\right)\)
Có 40 số hạng
=>A\(< 40.\frac{1}{41}=\frac{40}{41}< 1\)
=>A<1(2)
+)Từ (1) và (2)
=>\(\frac{7}{12}< A< 1\)
Vậy \(\frac{7}{12}< A< 1\)
Chúc bn học tốt
tach nho nhong ra vdtach thanh 2 nhom ; tach thanh 3 nhgom ; ....
ta co 1/41+1/42+1/43+...+1/79+1/80=(1/41+1/42+1/43+....1/60)+(1/61+1/62+...+1/80
Chào em
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
=> ĐPCM
Thấy 1/41+1/42 +......+ 1/60 < 1/40 .20
1/41 +1/42 + .....+1/60<1/2
mà 1/61 +1/62+......+1/80 < 1/60 .20 =1/3
suy ra 1/41+1/42+ .......+1/80 <1/2 +1/3=7/12(đpcm)
Lại có 1/41 +1/42 +.....+1/80 <1/40 .40 =1(đpcm)
+) Chứng minh \(\frac{7}{12}<\frac{1}{41}+\frac{1}{42}+....+\frac{1}{80}\)
\(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}\right)\)
> \(\frac{1}{60}.20+\frac{1}{80}.20=\frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}\) (1)
+) Chứng minh \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}<\frac{1}{40}.40=1\)(2)
Từ (1) và (2) => \(\frac{7}{12}<\frac{1}{41}+\frac{1}{42}+....+\frac{1}{80}<1\)(đpcm)