K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=8^2+6^2=100\)

hay BC=10(cm)
Vậy: BC=10cm

14 tháng 5

Tại sao hq lại song song ad

 

4 tháng 5 2023

chữ như gà bới

 

26 tháng 4 2018

a, Xét tam giác DAE và tam giác BAC có

      DAE = BAC ( đối đỉnh )

      AD = AB ( gt)

     AE= AC ( gt) 

=> tam giác DAE = tam giác BAC 

=> BC= DE

b, ta có  DAE = BAC = 90 độ ( 2 góc đối đỉnh )

 lại có BAD = CAE đối đỉnh 

=> BAD=CAE = 360 - (BaC + DAE)   tất cả trên 2 

<=> BAD= 360 -180  tâts cả trên 2 
<=> BAD = 180 trên 2

<=> BAD = 90 độ 

=> tam giác BAD vuông lại A

mà AB =AD (gt)

=> BAD vuông cân

=> DBA = BDA = 90 trên 2 = 45 độ

Chứng mình tương tự tam giác CAE vuông cân 

=>AEC=ACE= 90 trên 2 = 45 độ 

=> DBA=AEC=45 độ

mà chúng ở vị trí sole trong 

=> BD // CE

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a: BC=8cm

BC>AC

=>góc A>góc B

b: XétΔABD có

AC vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

c: GB+2GC=GB+GA>AB