tính nhanh
\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+........+\(\frac{1}{19.20}\)
dau . là dấu nhân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(B=\frac{1}{3}-\frac{1}{10}\)
\(B=\frac{7}{30}\)
\(B=\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}-\frac{1}{8.9}-\frac{1}{9.10}\)
\(\Rightarrow B=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(\Rightarrow B=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow B=\frac{1}{3}-\frac{1}{4}-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(\Rightarrow B=\frac{1}{12}-\frac{6}{40}\)
\(\Rightarrow B=\frac{-1}{15}\)
\(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{3}-\frac{1}{8}=\frac{5}{24}\)
Ez :))
\(a,\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{99.100}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{5}-\frac{1}{100}=\frac{20}{100}-\frac{1}{100}=\frac{19}{100}\)
Bài này bạn làm theo công thức:1/axa+1=1/a-1/a-1
Ta có:
A=1/5-1/6+1/6-1/7+1/7-1/8+...+1/99-1/100
A=1/5-1/100
A=19/100
\(\frac{1}{5.6}\)- \(\frac{1}{6.7}\)- \(\frac{1}{7.8}\) - ... - \(\frac{1}{2004.2005}\)
= \(\frac{1}{5}\)- \(\frac{1}{6}\)+ \(\frac{1}{6}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{8}\)+ ... + \(\frac{1}{2004}\)- \(\frac{1}{2005}\)
=\(\frac{1}{5}\)- \(\frac{1}{2005}\)
= \(\frac{80}{401}\)
A= 1/3 + 1/4-1/4+1/5-1/5+1/6-1/6+1/7-1/7+1/8-1/8+1/9-1/9+1/10
A=1/3+1/10
A=13/30
a,\(A=\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-....-\frac{1}{8.9}-\frac{1}{9.10}\)
\(=\frac{1}{12}-\left(\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{12}-\frac{1}{4}+\frac{1}{10}=\frac{5}{60}-\frac{15}{60}+\frac{6}{60}=\frac{-1}{15}\)
Vậy \(A=\frac{-1}{15}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)\(\frac{1}{25}\)
\(A=\frac{1}{5}-\frac{1}{25}\)
\(A=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(A=\frac{1}{5}-\frac{1}{25}\)
\(A=\frac{4}{25}\)
\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{19.20}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{5}-\frac{1}{20}\)
\(=\frac{4}{20}-\frac{1}{20}=\frac{3}{20}\)