K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

mình không biets khó quá

\(3x\left(x+\frac{1}{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x=0\\x+\frac{1}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{5}\end{cases}}}\)

\(\left(x-2\right)\left(3+x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\3+x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)

\(\left(x-3\right)\left(x+9\right)>0\)

Th1 : \(\hept{\begin{cases}x-3>0\\x+9>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-9\end{cases}\Rightarrow}x>3}\)

Th2 : \(\hept{\begin{cases}x-3< 0\\x+9< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -9\end{cases}\Rightarrow}x< -9}\)

21 tháng 7 2016

a)

\(3x\left(x+\frac{1}{5}\right)=0\)

=>_3x=0

   |_x+1/5=0

=> _x=0

     |_x=-15

b)(x-2)(3+x)=0

=> _x-2=0

     |_ 3+x=0

=> _x=2

     |_x=-3

21 tháng 7 2016

c) x khác -9 và 3

4>x>-9

18 tháng 8 2021

a)(2x-3)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)

Vậy x=3/2 hoặc x=-5

18 tháng 8 2021

a) \(\left(2x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)

b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)

c) \(5x\left(2x-3\right)-6x+9=0\)

\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

a: \(\Leftrightarrow3x\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{5}\end{matrix}\right.\)

29 tháng 7 2021

`a)4x(x-2)+x-2=0`

`<=>(x-2)(4x+1)=0`

`<=>[(x-2=0),(4x+1=0):}`

`<=>[(x=2),(x=-1/4):}`

Vậy `S={2;-1/4}.`

`b)(3x-1)^3-9=0`

`<=>(3x-1-3)(3x-1+3)=0`

`<=>(3x-4)(3x+2)=0`

`<=>[(3x-4=0),(3x+2=0):}`

`<=>[(x=4/3),(x=-2/3):}`

Vậy `S={4/3;-2/3}.`

`c)x^3-8+(x-2)(x+1)=0`

`<=>(x-2)(x^2+2x+4)+(x-2)(x+1)=0`

`<=>(x-2)(x^2+3x+5)=0`

Mà `x^2+3x+5=(x+3/2)^2+11/4>=11/4>0`

`<=>x-2=0`

`<=>x=2`

Vậy `S={2}`

a) Ta có: \(4x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)

b)Ta có: \(\left(3x-1\right)^2-9=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

c) Ta có: \(x^3-8+\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

6 tháng 8 2021

a, \(4x\left(x-2\right)+x-2=0\Leftrightarrow\left(4x+1\right)\left(x-2\right)=0\Leftrightarrow x=-\dfrac{1}{4};x=2\)

b, \(\left(3x-1\right)^2-9=0\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\Leftrightarrow x=\dfrac{4}{3};x=-\dfrac{2}{3}\)

c, \(x^3-8+\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\ne0\right)=0\Leftrightarrow x=2\)

a) Ta có: \(4x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)

b) Ta có: \(\left(3x-1\right)^2-9=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

7 tháng 11 2021

\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)

7 tháng 11 2021

a) 9x2-49=0

(3x)2-72=0

<=> (3x-7)(3x+7)=0

th1: 3x-7=0

<=>3x=7

<=>x=\(\dfrac{7}{3}\)

th2: 3x+7=0

<=>3x=-7

<=>x=\(-\dfrac{7}{3}\)

 

 

30 tháng 4 2021

a. 2x\(^2\)-8=0

2x\(^2\)=8

x\(^2\)=4

x=2

b.3x\(^3\)-5x=0

x(3x\(^2\)-5)=0

\(\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=^+_-\sqrt{5}\end{matrix}\right.\)

 

1 tháng 5 2021

c.x\(^4\)+3x\(^2\)-4=0\(^{\left(\cdot\right)}\)

đặt t=x\(^2\) (t>0)

ta có pt: t\(^2\)+3t-4=0 \(^{\left(1\right)}\)

thấy có a+b+c=1+3+(-4)=0 nên pt\(^{\left(1\right)}\) có 2 nghiệm

t\(_1\)=1; t\(_2\)=\(\dfrac{c}{a}\)=-4

khi t\(_1\)=1 thì x\(^2\)=1 ⇒x=\(^+_-\)1

khi t\(_2\)=-4 thì x\(^2\)=-4 ⇒ x=\(^+_-\)2

vậy pt đã cho có 4 nghiệm x=\(^+_-\)1; x=\(^+_-\)2

d)3x\(^2\)+6x-9=0

thấy có a+b+c= 3+6+(-9)=0 nên pt có 2 nghiệm

x\(_1\)=1; x\(_2\)=\(\dfrac{c}{a}=\dfrac{-9}{3}=-3\)

e. \(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}\)  (ĐK: x#5; x#2 )

\(\dfrac{\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}+\dfrac{3\left(x+2\right)\left(2-x\right)}{\left(x-5\right)\left(2-x\right)}\)=\(\dfrac{6\left(x-5\right)}{\left(x-5\right)\left(2-x\right)}\)

⇒2x - x\(^2\) + 4 - 2x + 6x - 6x\(^2\) + 12 - 6x - 6x +30 = 0

⇔-7x\(^2\) - 6x + 46=0

Δ'=b'\(^2\)-ac = (-3)\(^2\) - (-7)\(\times\)46= 9+53 = 62>0

\(\sqrt{\Delta'}=\sqrt{62}\)

vậy pt có 2 nghiệm phân biệt

x\(_1\)=\(\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{3+\sqrt{62}}{-7}\)

x\(_2\)=\(\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{3-\sqrt{62}}{-7}\)

vậy pt đã cho có 2 nghiệm x\(_1\)=.....;x\(_2\)=......

câu g làm tương tự câu c