Bài 1: Cho phương trình x² – 2(m+1)x + m² + m +1 = 0
Tìm các giá trị của m để phương trình có nghiệm
Trong trường hợp phương trình có nghiệm là x1, x2 hãy tính theo m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(m^2+m-1\right)\ge0\)
\(\Leftrightarrow m+2\ge0\Rightarrow m\ge-2\)
Khi đó theo hệ thức Viet : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m+1\right)^2-2\left(m^2+m-1\right)=2m^2+6m+6\)
x2 - 2(m + 1)x + m2 + m - 1 = 0
\(\Delta\) = [-2(m + 1)]2 - 4.1.(m2 + m - 1) = 4(m2 + 2m + 1) - 4m2 - 4m + 4 = 4m2 + 8m + 4 - 4m2 - 4m + 4 = 4m + 8
Để pt có nghiệm thì \(\Delta\) \(\ge\) 0 \(\Leftrightarrow\) 4m + 8 \(\ge\) 0 \(\Leftrightarrow\) m \(\ge\) -2
Với m \(\ge\) -2 ta có:
x1 = \(\dfrac{2\left(m+1\right)+\sqrt{4m+8}}{2}=m+1+\sqrt{m+2}\)
x2 = \(\dfrac{2\left(m+1\right)-\sqrt{4m+8}}{2}=m+1-\sqrt{m+2}\)
x1 + x2 = m + 1 + \(\sqrt{m+2}\) + m + 1 - \(\sqrt{m+2}\) = 2m + 2
x1x2 = (m + 1 + \(\sqrt{m+2}\))(m + 1 - \(\sqrt{m+2}\)) = (m + 1)2 - m - 2 = m2 + 2m + 1 - m - 2 = m2 + m - 1 = \(\left(m+\dfrac{1-\sqrt{5}}{2}\right)\left(m+\dfrac{1+\sqrt{5}}{2}\right)\)
(x1)2 + (x2)2 = (m + 1 + \(\sqrt{m+2}\))2 + (m + 1 - \(\sqrt{m+2}\))2 = (x1 + x2)2 - 2x1x2 = (2m + 2)2 - 2(m2 + m - 1) = 4m2 + 8m + 4 - 2m2 - 2m + 2 = 2m2 + 6m + 6 = 2(m2 + 3m + 3)
Chúc bn học tốt!
x1+x2=2m+2; x1x2=m^2+4
x1^2+2(m+1)x2<=2m^2+20
=>x1^2+x2(x1+x2)<=2m^2+20
=>x1^2+x2x1+x2^2<=2m^2+20
=>(x1+x2)^2-x1x2<=2m^2+20
=>(2m+2)^2-(m^2+4)<=2m^2+20
=>4m^2+8m+4-m^2-4-2m^2-20<=0
=>m^2-8m-20<=0
=>m<=-10 hoặc m>2
\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)
Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)
Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)
Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)
\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)
\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)
\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)
\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)
\(\Leftrightarrow m^2+8m-16\le0\)
\(\Leftrightarrow-10\le m\le2\)
Kết hợp điều kiện....
∆ = m² - 4(m - 5)
= m² - 4m + 5
= (m² - 4m + 4) + 1
= (m - 2)² + 1 > 0 với mọi m
Phương trình luôn có 2 nghiệm phân biệt
Theo Viét ta có:
x₁ + x₂ = m (1)
x₁.x₂ = m - 5 (2)
x₁ + 2x₂ = 1 (3)
Lấy (3) - (1) ta được x₂ = 1 - m thay vào (1) ta được
x₁ + 1 - m = m
⇔ x₁ = 2m - 1
Thay x₁ = 2m - 1 và x₂ = 1 - m vào (2) ta được:
(2m - 1)(1 - m) = m - 5
⇔ 2m - 2m² - 1 + m - m + 5 = 0
⇔ -2m² + 2m + 5 = 0
∆ = 4 - 4.(-2).5
= 44
m₁ = -1 + √11
m₂ = -1 - √11
Vậy m = -1 + √11; m = -1 - √11 thì phương trình đã cho có hai nghiệm thỏa mãn x₁ + 2x₂ = 1
Giả sử phương trình đã cho có 2 nghiệm x 1 và x 2 , theo hệ thức Vi-ét ta có:
x 1 + x 2 = -b/a = -[-2(m + 1)]/1 = 2(m + 1)/1 = 2(m + 1)
x 1 x 2 = c/a = ( m 2 + m - 1)/1 = m 2 + m – 1
x 1 2 + x 2 2 = x 1 + x 2 2 – 2 x 1 x 2 = 2 m + 2 2 – 2( m 2 + m – 1)
= 4 m 2 + 8m + 4 – 2 m 2 – 2m + 2 = 2 m 2 + 6m + 6
=>(x1+x2)^2+x1x2=1
=>(-2m)^2+(-3)=1
=>4m^2=4
=>m=-1 hoặc m=1
Do a = 1 và c = -3
⇒ a và c trái dấu
⇒ Phương trình luôn có hai nghiệm phân biệt
Theo Viét, ta có:
x₁ + x₂ = -2m
x₁x₂ = -3
Lại có:
x₁² + x₂² + 3x₁x₂ = 1
⇔ x₁² + 2x₁x₂ + x₂² + x₁x₂ = 1
⇔ (x₁ + x₂)² + x₁x₂ = 1
⇔ (-2m)² - 3 = 1
⇔ 4m² = 4
⇔ m² = 1
⇔ m = -1 hoặc m = 1
Vậy m = -1; m = 1 thì phương trình đã cho có hai nghiệm phân biệt x₁, x₂ thỏa mãn: x₁² + x₂² + 3x₁x₂ = 1
a) Thay x=0 vào phương trình, ta được:
\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)
\(\Leftrightarrow m+1=0\)
hay m=-1
Áp dụng hệ thức Vi-et, ta có:
\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)
\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)
\(x^2-11x+m-2=0\left(1\right)\)
Để phương trình (1) có 2 nghiệm phân biệt thì:
\(\Delta>0\Rightarrow\left(-11\right)^2-4.1.\left(m-2\right)>0\)
\(\Leftrightarrow121-4m+8>0\)
\(\Leftrightarrow m< \dfrac{129}{4}\)
Theo hệ thức Vi-et ta có:
\(\left\{{}\begin{matrix}x_1+x_2=11\left(1'\right)\\x_1x_2=m-2\end{matrix}\right.\).
Ta có: \(\sqrt{x^2_1-10x_1+m-1}=5-\sqrt{x_2+1}\left(2\right)\)
Đk: \(\left\{{}\begin{matrix}x_1^2-10x_1+m-1\ge0\\-1\le x_2\le24\end{matrix}\right.\)
\(\left(2\right)\Rightarrow x^2_1-10x_1+m-1=25-10\sqrt{x_2+1}+x_2+1\)
\(\Leftrightarrow x_1^2-10x_1+\left(m-2\right)-25+10\sqrt{11-x_1+1}-x_2=0\)
\(\Rightarrow x_1^2-\left(x_1+x_2\right)-9x_1+x_1x_2-25+10\sqrt{12-x_1}=0\)
\(\Rightarrow x_1\left(x_1+x_2\right)-11-9x_1-25+10\sqrt{12-x_1}=0\)
\(\Rightarrow11x_1-9x_1-36+10\sqrt{12-x_1}=0\)
\(\Leftrightarrow2x_1+10\sqrt{12-x_1}-36=0\)
\(\Leftrightarrow x_1+5\sqrt{12-x_1}-18=0\)
\(\Leftrightarrow18-x_1=5\sqrt{12-x_1}\left(x_1\le12\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\\left(18-x_1\right)^2=25\left(12-x_1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\324-36x_1+x_1^2=300-25x_1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\x_1^2-11x_1+24=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=3\\x_1=8\end{matrix}\right.\left(nhận\right)\)
Thay \(x_1=3\) vào (1') ta được:
\(3+x_2=11\Rightarrow x_2=8\left(nhận\right)\)
\(\Rightarrow m=x_1x_2+2=3.8+2=26\left(thỏa\Delta>0\right)\)
Thay \(x_1=8\) vào (1') ta được:'
\(8+x_2=11\Rightarrow x_2=3\left(nhận\right)\)
\(\Rightarrow m=x_1x_2+2=8.3+2=26\left(thỏa\Delta>0\right)\)
Vậy giá trị m cần tìm là 26.
Ta có:
\(\text{∆}'=\left(m+1\right)^2-\left(m^2+m\right)\)
\(=m^2+2m+1-\left(m^2+m\right)=m+1\)
Để phương trình có 2 nghiệm phân biệt x1, x2
\(\Leftrightarrow\text{∆}'>0\Leftrightarrow m+1>0\Leftrightarrow m>-1\)
Áp dụng hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+m\end{matrix}\right.\)
Ta có: \(\dfrac{1}{x_1^2}+\dfrac{1}{x^2_2}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{x_1^2+x^2_2}{x_1^2.x_2^2}=\dfrac{1}{8}\)
\(\Leftrightarrow8[\left(x_1+x_2\right)^2-2x_1.x_2]=x_1^2.x_2^2\)
\(\Leftrightarrow8[[2\left(m+1\right)]^2-2\left(m^2+m\right)]=\left(m^2+m\right)^2\)
\(\Leftrightarrow8\left[4m^2+8m+4-2m^2-2m\right]=m^4+2m^3+m^2\)
\(\Leftrightarrow\)\(8\left[2m^2+6m+4\right]=m^4+2m^3+m^2\)
\(\Leftrightarrow m^4+2m^3-15m^2-48m-32=0\)
\(\Leftrightarrow\left(m+1\right)\left(m^3+m^2-16m-32\right)=0\)
Vì m>-1
\(\Leftrightarrow m^3+m^2-16m-32=0\)
Đến đây nghiêm xấu bạn xem lại đề hoặc có thể sử dụng CTN Cardano
Phương trình có nghiệm khi:
\(\Delta'=\left(m+1\right)^2-\left(m^2+m+1\right)\ge0\)
\(\Rightarrow m\ge0\)
Khi đó: \(\left\{{}\begin{matrix}x_1=m+1-\sqrt{m}\\x_2=m+1+\sqrt{m}\end{matrix}\right.\)