K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

vậy làm cho mk phần b bài 1 va phần 3 bài 2 nhé

10 tháng 7 2018

\(12,49\times12,47=155,7503\)

\(12,48\times12,48=155,7504\)

Vay 12,49.12,47<12,48.12,48

10 tháng 7 2018

12,47x12,47<12,48x12,48

29 tháng 5 2016

Để A đạt GTLN

=>x2 -2x đạt giá trị dương nhỏ nhất

=>x2-2x=1

=>x2-2x-1=0

=>x=$1-\sqrt{2};\sqrt{2}+1$12;2+1

Vậy A ko xảy ra GTLN

 
29 tháng 5 2016

Để A đạt GTLN

=>x2 -2x đạt giá trị dương nhỏ nhất

=>x2-2x=1

=>x2-2x-1=0

=>x=\(1-\sqrt{2};\sqrt{2}+1\)

Vậy A ko xảy ra GTLN

3 tháng 7 2018

\(\Rightarrow\frac{1}{x}\in\left\{-2;-1;0;1\right\}\)

\(\Rightarrow\chi\in\left\{\frac{-1}{2};-1;1\right\}\)

24 tháng 10 2019

\(3-\left(x-1\right)=2-2\left(x-3\right)\)

\(3-x+1=2-2x+6\)

\(4-x=8-2x\)

\(4-x-8+2x=0\)

\(x-4=0\)

\(x=4\)

24 tháng 10 2019

3-(x-1)=2-2(x-3)=>3-2=x-1-2(x-3)=>1=x-1-2x+6

=>1=-x+5=>-x=1-5=-4=>x=4

Chúc bạn học tốt nhớ k cho mik nha.

9 tháng 11 2023

\(\left(x-1\right)^3-\left(\dfrac{2}{2023}-\dfrac{7}{247}+\dfrac{1}{8}\right)=\dfrac{7}{247}-\dfrac{2}{2023}\)

\(\Rightarrow\left(x-1\right)^3-\dfrac{2}{2023}+\dfrac{7}{247}-\dfrac{1}{8}=\dfrac{7}{247}-\dfrac{2}{2023}\)

\(\Rightarrow\left(x-1\right)^3=\dfrac{7}{247}-\dfrac{7}{247}-\dfrac{2}{2023}+\dfrac{2}{2023}+\dfrac{1}{8}\)

\(\Rightarrow\left(x-1\right)^3=\dfrac{1}{8}\)

\(\Rightarrow\left(x-1\right)^3=\left(\dfrac{1}{2}\right)^3\)

\(\Rightarrow x-1=\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{2}+1\)

\(\Rightarrow x=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
9 tháng 11 2023

Lời gải:

$(x-1)^3=\frac{7}{247}-\frac{2}{2023}+\frac{2}{2023}-\frac{7}{247}+\frac{1}{8}=\frac{1}{8}$

$x-1=\frac{1}{2}$

$x=\frac{1}{2}+1=\frac{3}{2}$

5 tháng 8 2015

Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)

Dấu "=" xảy ra khi x = y = 1/2.

GTNN của A là 6.

\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)

Dấu "=" xảy ra khi x = y = 1/2.

Vậy GTNN của B là 8063.