K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2023

a) 6x² + 7xy + 2y²

= 6x² + 4xy + 3xy + 2y²

= (6x² + 4xy) + (3xy + 2y²)

= 2x(3x + 2y) + y(3x + 2y)

= (3x + 2y)(2x + y)

b) x² - y² + 10x - 6y + 16

= x² + 10x + 25 - y² - 6y - 9

= (x² + 10x + 25) - (y² + 6y + 9)

= (x + 5)² - (y + 3)²

= (x + 5 - y - 3)(x + 5 + y + 3)

= (x - y + 2)(x + y + 8)

c) 4x⁴ + y⁴

= 4x⁴ + 4x²y² + y⁴ - 4x²y²

= (2x² + y²)² - (2xy)²

= (2x² + y² - 2xy)(2x² + y² + 2xy)

a: \(6x^2-3xy\)

\(=3x\cdot2x-3x\cdot y\)

=3x(2x-y)

b: \(x^2-y^2-6x+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

c: \(x^2+5x-6\)

=\(x^2+6x-x-6\)

=x(x+6)-(x+6)

=(x+6)(x-1)

21 tháng 1 2024

thế em sai hả anh ?

22 tháng 12 2023

a: \(6x^2-3xy\)

\(=3x\cdot2x-3x\cdot y\)

\(=3x\left(2x-y\right)\)

b: \(x^2-y^2-6x+9\)

\(=\left(x^2-6x+9\right)-y^2\)

\(=\left(x-3\right)^2-y^2\)

\(=\left(x-3-y\right)\left(x-3+y\right)\)

c: \(x^2+5x-6\)

\(=x^2+6x-x-6\)

\(=x\left(x+6\right)-\left(x+6\right)\)

\(=\left(x+6\right)\left(x-1\right)\)

22 tháng 12 2023

Nếu tổng các hệ số trong đa thức bằng 0 thì đây thức có một nghiệm là 1, đa thức trên sẽ có một nghiệm là 1 nên đa thức có thể phân tích thành (x - 1) x a

Nếu tổng các hệ số bậc chẵn bằng tổng hệ số bậc lẻ thì đa thức có một nghiệm là -1

Ví dụ đa thức -x² + 5x + 6 có tổng hệ số bằng chẵn bằng -1 + 6 = 5 bằng hệ số bậc lẻ, đa thức trên sẽ có một nghiệm là -1 nên đa thức có thể phân tích thành (a + 1) x a

a. 6x² - 3xy = 3x x 2x - y

b. x^2 - y^2 - 6x + 9 = x² - 6x + 9 - y²( x - 3)^2 - y ^2 = x - 3 - y x  (x - 3) + y

c. x² + 5x - 6 = x² - x + 6x - 6 = (x - 1) x (x + 6)

28 tháng 10 2021

a) \(x^2+2xy+y^2-4=\left(x+y\right)^2-2^2\)

\(=\left(x+y-2\right)\left(x+y+2\right)\)

b) \(x^2-y^2+x+y=\left(x-y\right)\left(x+y\right)+1\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+1\right)\)

c) \(y^2+x^2+2xy-16=x^2+2xy+y^2-16\)

\(=\left(x+y\right)^2-4^2=\left(x+y+4\right)\left(x+y-4\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

16 tháng 11 2021

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

16 tháng 11 2021

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)

 

27 tháng 10 2023

a, \(8^3yz+12^2yz+6xyz+yz\)

\(=512yz+144yz+6xyz+yz\)

\(=yz\left(512+14+6x+1\right)\)

\(=yz\left(527+6x\right)\)

$---$

b, \(81x^4\left(z^2-y^2\right)-z^2+y^2\)

\(=81x^4\left(z^2-y^2\right)-\left(z^2-y^2\right)\)

\(=\left(z^2-y^2\right)\left(81x^4-1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left[\left(9x^2\right)^2-1^2\right]\)

\(=\left(z-y\right)\left(z+y\right)\left(9x^2-1\right)\left(9x^2+1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left[\left(3x\right)^2-1^2\right]\left(9x^2+1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left(3x-1\right)\left(3x+1\right)\left(9x^2+1\right)\)

$---$

c, \(\dfrac{x^3}{8}-\dfrac{y^3}{27}+\dfrac{x}{2}-\dfrac{y}{3}\)

\(=\left[\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{3}\right)^3\right]+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)

\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}\right)+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)

\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}+1\right)\)

$---$

d, \(x^6+x^4+x^2y^2+y^4-y^6\)

\(=\left(x^6-y^6\right)+\left(x^4+x^2y^2+y^4\right)\)

\(=\left[\left(x^2\right)^3-\left(y^2\right)^3\right]+\left(x^4+x^2y^2+y^4\right)\)

\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)

\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2+1\right)\)

$Toru$

16 tháng 10 2023

\(a,A=x^2+7x+7y-y^2\\ =x^2-y^2+7x+7y\\ =\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\\ =\left(x+y\right)\left(x-y+7\right)\)

\(b,B=x^2+2xy+y^2-3x-3y\\ =\left(x+y\right)^2-3\left(x+y\right)\\ =\left(x+y\right)\left(x+y-3\right)\)

18 tháng 11 2021

\(a,=3xyz\left(x+2\right)\\ b,=5\left(x+2\right)-x\left(x+2\right)=\left(x+2\right)\left(5-x\right)\\ c,=\left(x+y\right)^2-z^2=\left(x+y-z\right)\left(x+y+z\right)\)

18 tháng 11 2021

a) 3x2yz + 6xyz = 3xyz(x+2)
b) 5(x+2) - x2 - 2x = 5(x+2) - x(x+2) = (5+x)(x+2)
c) x2 + 2xy + y2 - 22 = (x2+2xy+y2) - 22 = (x+y)2 - 22 = (x+y+2)(x+y-2)

2 tháng 8 2021

`9-x^2-2xy-y^2`

`=9-(x^2+2xy+y^2)`

`=3^2-(x+y)^2`

`=(3+x+y)(3-x-y)`

2 tháng 8 2021

9-x2-2xy-y2=9-(x2+2xy+y2)=32-(x+y)2=(3-x-y)(3+x+y)