gọi S(n) là tổng các chữ số của n.Tìm số nguyên dương n sao cho n+S(n) =2014
làm hộ mk nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì s(n)+n=2018=>n<hoặc =2018
=>s(n)<hoặc =1+9+9+9=28
=>n có dạng 19ab hoặc 20ab
th1:
19ab+1+9+a+b=11a+2b+1910=2018
11a+2b=108
=>a chia hết cho 2 và b<10 nên loại
th2
20ab+2+0+a+b=2018
2002+11a+2b=2018
11a+2b=16
nên a chia hết cho 2 nên a=0 và b=8
vậy số cần tìm là 2008
Dễ thấy số cần tìm là số có bốn chữ số.
Đặt số cần tìm là \(\overline{abcd}\).
\(a=1\)hoặc \(a=2\).
Với \(a=1\):
\(\overline{1bcd}+1+b+c+d=1001+\overline{bcd}+b+c+d=2015\)
\(\Leftrightarrow\overline{bcd}+b+c+d=1014\)
\(\Leftrightarrow\overline{bcd}=1014-b-c-d\ge1014-9-9-9=987\)
Suy ra \(b=9\).
\(\overline{9cd}=1014-9-c-d\Leftrightarrow\overline{cd}=105-c-d\ge105-9-9=87\)
suy ra \(c=8\)hoặc \(c=9\).
Từ đây suy ra \(c=9,d=3\)thỏa mãn.
Ta có số: \(1993\).
Với \(a=2\):
\(\overline{2bcd}+2+b+c+d=2015\)
Dễ thấy \(b=0\).
suy ra \(\overline{cd}+2000+2+0+c+d=2015\Leftrightarrow\overline{cd}+c+d=13\)
suy ra \(c=d=1\).
Ta có số: \(2011\).
Vậy ta có hai số thỏa mãn ycbt là \(1993,2011\).
dễ thấy để S(n) và S(n+1) đều chia hết cho 1 số thì đuôi của n kết thúc bằng các số 9.
giả sử n có x số 9 cuối(ta tìm x nhỏ nhất)
khi đó n có dạng a 99...9 (x số 9)
=> n+1=b00...0 ( x+1 số 0) với b=a+1
do S(n) ≡ S(n+1) (mod 7) => a+9x ≡ b (mod 7) => 9x ≡ 1 (mod 7)
=> x=4
=> n=a9999
mà S(n) chia hết cho 7 => a=6 => n=69999 là nhỏ nhất thỏa mãn :D
\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)
\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))
* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))
Vậy không tồn tại số nguyên dương n thỏa mãn đề bài