A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^4}+.....+\frac{1}{3^{104}}+\frac{1}{3^{105}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tử số là B=1+2+3+....+105
Số các số hạng của B là
(105-1):1+1=105(số)
Tổng B là:
(105+1)x105:2=5565
Đặt mẫu số là C =1-2+3-4+...+103-104+105
C=(1-2)+(3-4)+...+(103-104)+105
C=-1+(-1)+...+(-1)(52 số hạng) + 105
C=-52 + 105
C=53
Vậy A=\(\dfrac{B}{C}\)=\(\dfrac{5565}{53}=105\)
A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
B = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
1) Đặt \(\frac{1}{317}=a;\frac{3}{111}=b\) thế vào mà làm thôi
mấy câu sau tương tự
Đặt \(a=\frac{1}{315}\), \(b=\frac{1}{651}\)ta có :
\(A=\left(2+a\right)\cdot b-3a\left(3+1-b\right)-4ab+12a\)
\(\Rightarrow A=2b+ab-12a+3ab-4ab+12a\)
\(\Rightarrow A=2b=\frac{2}{651}\)