Cho tam giác ABC, có AB=AC, D là trung điểm BC a) Chứng minh tam giác AMB= tam giác AMC b) Vẽ DM vuông góc với AB tại M và DN vuông góc với AC tại N. Chứng minh DM=DN c) Chứng minh MN // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADC có
AB=AC
AD chung
BD=CD
Do đó: ΔADB=ΔADC
b: Ta có: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
c: Xét ΔADM vuông tại M và ΔADN vuông tại N có
AD chung
\(\widehat{DAM}=\widehat{DAN}\)
Do đó: ΔADM=ΔADN
=>AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Xét tứ giác AMDN có
AM//DN
AN//MD
Do đó: AMDN là hình bình hành
mà \(\widehat{MAN}=90^0\)
nên AMDN là hình chữ nhật
mà AM=AN
nên AMDN là hình vuông
Xét tứ giác AMDN có
AM//DN
AN//MD
Do đó: AMDN là hình bình hành
mà \(\widehat{MAN}=90^0\)
nên AMDN là hình chữ nhật
mà AM=AN
nên AMDN là hình vuông
a, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A , ta có :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Rightarrow AC^2=25^2-20^2\)
\(\Rightarrow AC^2=225\)
\(\Rightarrow AC=15cm\)
Vậy AC = 15cm .
b,Xét tam giác AMC và tam giác HMB có :
góc MAC = góc MHB = 90độ
góc AMC = góc HMB ( đối đỉnh )
Do đó : tam giác AMC đồng dạng với tam giác HMB ( g.g )
c,Xét tam giác ADB và tam giác AMC có :
góc BAD = góc CAM = 90độ
góc ABD = góc ACM ( vì tam giác AMC đồng dạng với tam giác HMB )
Do đó : tam giác ADB đồng dạng với tam giác AMC ( g.g )
\(\Rightarrow\frac{AC}{AB}=\frac{AM}{AD}\)
\(\Rightarrow AC.AD=AM.AB\)
d, Xét tam giác DBC có BA cắt HC tại M :
\(CH\perp BD\)
\(BA\perp DC\)
\(\Rightarrow\)M là trực tâm của tam giác DBC
Vậy DM vuông góc với BC .
Học tốt
a) Sửa đề: Chứng minh ΔADB=ΔADC
Xét ΔADB và ΔADC có
AD chung
DB=DC(D là trung điểm của BC)
AB=AC(ΔABC cân tại A)
Do đó: ΔADB=ΔADC(c-c-c)