cho \(\frac{a}{b}\)=\(\frac{c}{d}\)
chung minh \(\frac{a-b}{b}\)=\(\frac{c-d}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)
câu cuối lm tương tự
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Nhớ k cho mik nha!
Cái này bạn tích chéo lên là ra chứ có gì đâu ( dựa vào ad<bc)
a/b=c/d nên ad=bc
Ta có:
(a+b)(c-d)= ac -ad +bc -bd=ac-bd(1)
(a-b)(c+d)=ac+ad-bc-bd=ac-bd(2)
Từ (1) và (2) suy ra: (a+b)(c-d)=(a-b)(c+d) nên: (a+b)/(a-b)=(c+d)/(c-d)
A/D tỉ lệ thức ta dc :
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(=>\frac{a+b}{c+d}=\frac{a-b}{c-d}=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
đpcm
\(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{2a}{5b}=\frac{2c}{5d}\)
\(\Leftrightarrow\frac{2a}{5b}-\frac{3}{5}=\frac{2c}{5d}-\frac{3}{5}\)
\(\Leftrightarrow\frac{2a-3b}{5b}=\frac{2c-3d}{5d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
và \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}\frac{b}{c}\frac{c}{d}=\frac{a}{d}\)
=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)(đpcm)
Ta có : \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
Theo t/c của dãy tỉ số = nhau :
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
=>ĐPCM
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ad-bd=bc-bd\)
\(\Rightarrow d\left(a-b\right)=b\left(c-d\right)\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)
Có \(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a-b}{b}=\frac{c-d}{d}\)(Đpcm)