mọi người giúp mình một trong hai bài với ạ, thanks
Bài 1: cho các số dương x, y thay đổi tm đk: x+y=1. Tìm GTNN của biểu thức:
\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
bài 2:cho hàm số f(n) xác định trên N thỏa:
f(n)=n-3 nếu n\(\ge1000\)
f(n)=f[f(n+5)] nếu n<1000.
Chứng minh rằng:
\(\frac{f\left(30\right)+f\left(4\right)}{2}+f\left(95\right)=1995\)
Bài 1:
Ta có: xy ≤ (x + y)²/4 = 1/4, dấu = xảy ra khi x = y = 1/2
P = (x² + 1/y²)(y² + 1/x²) = (xy)² + 1 + 1 + 1/(xy)²
= (xy)² + 1/[256(xy)²] + 255/[256(xy)²] + 2
ta có:
(xy)² + 1/[256(xy)²] ≥ 2 √(1/256) = 1/8. dấu = xảy ra khi x = y = 1/2
255/[256(xy)²] + 2 ≥ 255/(256.1/16) + 2 = 287/16. dấu = xảy ra khi x = y = 1/2
cộng theo vế → P ≥ 1/8 + 287/16 = 289/16
vậy GTNN của P là 289/16, đạt được khi x = y = 1/2