Giúp mình vs
1.Tìm x thuộc Z để (x^3 - 2) chia hết (x - 1)
2.Tìm a để (x^3 - a) chia hết (x - 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì x+3 chia hết cho x-2 suy ra (x-2)+5 chia hết cho x-2.
Từ đây, ta có 5 cũng chia hết cho x-2, suy ra: x-2 thuộc Ư(5)
Ư(5)={-5; -1; 1; 5}
x-2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
b)
Tìm m để
a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)
b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)
x + 7 chia hết cho x - 3
= (x - 3 + 10) chia hết cho (x - 3)
Vì (x - 3) chia hết cho (x - 3) nên 10 chia hết cho (x - 3)
=> x - 3 thuộc Ư(10)
x - 3 thuộc 1,2,5,10
=> x thuộc 4,5,8,13
a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)
Để f(x) chia hết cho x + 2 thì f(-2)=0
\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)
\(-8+4+2+a=0\)
\(a-2=0\)
\(a=2\)
Vậy ...
c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)
\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)
\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)
\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy ...
a)
x + 1 chia hết -5 và -10 < x < 20
x + 1 = -5k và -10 < x < 20
x = -5k - 1 và -10 < x < 20
x ϵ {-6; -1; 4; 9; 14; 19}
b)
-5 chia hết x - 1
x - 1 ϵ Ư(-5) hay x - 1 ϵ {1; 5; -1; -5}
x ϵ {2; 6; 0; -4}
c)
x + 3 chia hết x - 1
(x + 3) - (x - 1) chia hết x - 1
4 chia hết x - 1 (từ đây làm tương tự như câu b)
d)
3x + 2 chia hết x - 1
(3x + 2) - 3(x - 1) chia hết x - 1
5 chia hết x - 1 (từ đây làm tương tự như câu b)
1. Chia (x^3-2) cho x-1 ta được x^2+x+1 dư -1
Vậy để x^3-2 chia hết cho x-1 thì x-1\(\in\)Ư(-1)
Mà Ư(-1)={1;-1}
=> x-1\(\in\){1;-1}
*) x-1 = 1<=> x=2
*) x-1 =-1 <=> x=0
Vậy x=2;x=0 thì x^3-2 chia hết cho x-1
2, Chia cột dọc x^3-a cho x-1 ta được x^2+x+1 dư 1-a
Vậy để x^3-a chia hết cho x-1 thì 1-a=0 <=> a = 1
Vậy a=1 thì x^3 - a chia hết cho x-1