Tìm X : a) (1/15 + 1/35 + 1/63) x X =1
b) X - (31/5 + 31/15 + 31/35 + 31/63 + 31/99 + 31/143) =9/13
Các bạn giải thật chi tiết cho mình nhé!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x-(\(\frac{31}{5}+\frac{31}{3.5}+\frac{31}{5.7}+\frac{31}{7.9}+\frac{31}{9.11}\)\(+\frac{31}{11.13}\))=\(\frac{9}{13}\)
x-\(\frac{31}{5}\)-\(\frac{31}{2}\)x(\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\))=\(\frac{9}{13}\)
x-\(\frac{31}{5}-\frac{31}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{11}-\frac{1}{13}\right)\)=\(\frac{9}{13}\)
x-\(\frac{31}{5}\)\(-\frac{31}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{9}{13}\)
x-\(\frac{31}{5}-\frac{31}{2}.\frac{10}{39}\)\(=\frac{9}{13}\)
x-\(\frac{31}{5}-\frac{155}{39}=\frac{9}{13}\)
x-\(\frac{434}{195}\)=\(\frac{9}{13}\)
x =\(\frac{9}{13}+\frac{434}{195}=\frac{569}{195}\)
nhé
Ta có :
Đặt \(A=\frac{31}{3}+\frac{31}{15}+...+\frac{31}{143}\)
\(A=\frac{31}{1.3}+\frac{31}{3.5}+...+\frac{31}{11.13}\)
\(\frac{2}{31}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(\frac{2}{31}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(\frac{2}{31}A=1-\frac{1}{13}\)
\(A=\frac{12}{13}:\frac{2}{31}\)
\(A=\frac{186}{13}\)
\(\Rightarrow x-\frac{186}{13}=\frac{9}{13}\)
\(x=\frac{9}{13}+\frac{186}{13}\)
\(x=\frac{195}{13}=15\)
Ủng hộ mk nha !!! ^_^
\(\text{Đặt }A=\frac{31}{3}+\frac{31}{15}+...+\frac{31}{143}\)
\(\Rightarrow A=\frac{31}{1.3}+\frac{31}{3.5}+...+\frac{31}{11.13}\)
\(\Rightarrow\frac{2}{31}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(\Rightarrow\frac{2}{31}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(\Rightarrow\frac{2}{31}A=1-\frac{1}{13}\Rightarrow A=\frac{12}{13}:\frac{2}{31}=\frac{186}{13}\)
\(\Rightarrow x-\frac{186}{13}=\frac{9}{13}\)
\(\Rightarrow x=\frac{9}{13}+\frac{186}{13}\)
\(\Rightarrow x=\frac{195}{13}=15\)
#)Giải :
\(200-18:\left(372:3x-1\right)-28=166\)
\(\Leftrightarrow200-18:\left(372:3x-1\right)=194\)
\(\Leftrightarrow18:\left(372:3x-1\right)=6\)
\(\Leftrightarrow372:3x-1=3\)
\(\Leftrightarrow3x-1=124\)
\(\Leftrightarrow3x=125\)
\(\Leftrightarrow x=\frac{125}{3}\)
200 - 18 : (372 : 3 . x - 1) - 28 = 166
=> 200 - 18 : (372 : 3.x - 1) = 166 + 28
=> 200 - 18 : (372 : 3.x) - 1) = 194
=> 18 : (372 : 3.x - 1) = 200 - 194
=> 18 : (372 : 3.x - 1) = 6
=> 372 : 3.x - 1 = 18 : 6
=> 372 : 3.x - 1 = 3
=> 372 : 3.x = 3 + 1
=> 372 : 3.x = 4
=> 3.x = 372 : 4
=> 3.x = 93
=> x = 93 : 3
=> x = 31
\(X-\left(\frac{31}{5}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}\right)=\frac{9}{13}\)
\(X-\left(\frac{31}{5}+\frac{31}{3\cdot5}+\frac{31}{5\cdot7}+\frac{31}{7\cdot9}+\frac{31}{9\cdot11}+\frac{31}{11\cdot13}\right)=\frac{9}{13}\)
\(X-\left[\frac{31}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)+\frac{31}{5}\right]=\frac{9}{13}\)
\(X-\left[\frac{31}{2}\cdot\left(\frac{1}{3}-\frac{1}{13}\right)+\frac{31}{5}\right]=\frac{9}{13}\)
\(X-\left[\frac{31}{2}\cdot\frac{10}{39}+\frac{31}{5}\right]=\frac{9}{13}\)
\(X-\frac{1984}{195}=\frac{9}{13}\)
\(\Rightarrow X=\frac{9}{13}+\frac{1984}{195}=\frac{163}{15}\)
\(\frac{31}{3}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}=\frac{31}{1.3}+\frac{31}{3.5}+\frac{31}{5.7}+\frac{31}{7.9}+\frac{31}{9.11}+\frac{31}{11.13}\\ \)
\(=\frac{31}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{31}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{31}{2}.\left(1-\frac{1}{13}\right)=\frac{31}{2}.\frac{12}{13}=\frac{31.6}{13}=\frac{186}{13}\)
\(\Rightarrow x-\frac{186}{13}=\frac{9}{13}\Leftrightarrow x=\frac{195}{13}=15\)
\(x-\left(\frac{31}{3}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}\right)=\)\(\frac{9}{13}\)(1)
Đặt \(A=\frac{31}{3}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}\)
\(A=31\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\right)\)
\(\Rightarrow2A=31\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(2A=31\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(2A=31\left(2-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(2A=31\left(2-\frac{1}{13}\right)\)
\(2A=31.\frac{25}{13}\)
\(2A=\frac{775}{13}\)
\(\Rightarrow A=\frac{775}{13}:2\)
\(A=\frac{775}{26}\)
Thay vào (1) ta có:
\(x-\frac{775}{26}=\frac{9}{13}\)
\(\Leftrightarrow x=\frac{9}{13}+\frac{775}{26}\)
\(\Leftrightarrow x=\frac{61}{2}\)
b) Thay x=-28
\(\left(-2\right)+17+\left(-28\right)=-13\)
c) Thay x=-4
\(\left(-4\right)+25+\left(-47\right)=-26\)
d) Thay x=8
\(25+8+\left(-13\right)=20\)
a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
1/3+13/15+33/35+31/63+.....................+9601/9603+9997/9999
\(=1-\frac{2}{3}+1-\frac{2}{15}+...+1-\frac{2}{9999}\)
\(=\left(1+1+1+1+...+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\right)\)
\(=50-\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{4950}{101}\)
HTDT