Cho tam giác ABC có M là trung điểm của BC. CMR AM<AB+AC/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABM và tam giác ACM:
+ AM chung.
+ AB = AC (gt).
+ \(\widehat{ABM}=\widehat{ACM}\) (AM là phân giác \(\widehat{BAC}\) ).
\(\Rightarrow\) Tam giác ABM = Tam giác ACM (c - g - c).
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.
Mà AM là phân giác \(\widehat{BAC}\) (gt).
\(\Rightarrow\) AM là trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) M là trung điểm của BC.
bài này thiếu 1 điều kiện bạn xem lại đi nha
có thêm điều kiện thiếu giải đã khó chứu ko ns đến giải thiếu hẳn ntn.
Bạn xem lại mik làm bài này nhiều nên biết.mik thuộc đề bài mà
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
M A B C
a, Xét tam giác AMB và tam giác AMC có
AB = AC (gt)
AM chung
MB = MC ( M là trung điểm BC )
=> tam giác AMB = tam giác AMC (c.c.c)
=>\(\widehat{BAM}=\widehat{CAM}\)
=> AM là phân giác góc BAC
b, Vì tam giác AMB = tam giác AMC (cmt)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Ta có : \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{AMB}+\widehat{AMB}=180^o\)
\(\Rightarrow\widehat{AMB}=90^o\)
\(\Rightarrow AM\perp BC\left(ĐPCM\right)\)
a) Xét tam giác ABC có : AB = AC
=> Tam giác ABC cân tại A
Mà AM là đường trung tuyến ứng với BC ( vì M là trung điểm của BC)
=>AM vừa là đường trung tuyến đồng thời là đường phân giác
Do đó : AM là tia phân giác của góc BAC(đpcm)
b)Vì tam giác ABC cần tại A ( theo câu a )
Nên đường phân giác AM đồng thời là đường cao
=> AM vuông góc với BC ( đpcm )
a: Xét tứ giác ABCE có
D là trung điểm của AC
D là trung điểm của BE
Do đó; ABCE là hình bình hành
Suy ra: BC//AE
b: Xét ΔABC có
AM là đường trung tuyến
BD là đường trung tuyến
AM cắt BD tại I
Do đó: I là trọng tâm của ΔABC
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng với ΔMNO
b: A,G,M thẳng hàng và H,G,O thẳng hàng
=>góc AGH=góc MGO
=>ΔAHG đồng dạng với ΔMOG
=>OM/AH=MG/AG
=>OM/AH=MN/AB=1/2
=>GM/GA=1/2
=>G là trọng tâm của ΔACB
cam máy tính hình nó mờ nha bạn
a) Xét ΔAMB và ΔAMC ta có:
AB=AC ( tích chất tam giác cân)
AM=MC (giả thiết)
AM cạnh chung
⇒ ΔAMB = ΔAMC (c-c-c)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng), mà hai góc này kề bù nên
\(\widehat{AMB}=\widehat{AMC}=\dfrac{180}{2}=90^o\)
Vậy AM ⊥ BC (đpcm)
b) từ câu a ta có ΔAMB = ΔAMC nên:
\(\widehat{BAM}=\widehat{CAM}\) (hai góc tương ứng)
⇒ AM là tia phân giác của \(\widehat{BAC}\) (đpcm)
c) Ta có AM ⊥ BC (1)
BM=CM (2) vì AM vuông góc với BC và M cách đều BC (BM=CM)
từ (1) và (2) ⇒ AM là đường trung trực của AB