K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

cảm ơn thầy nhìu

16 tháng 6 2016

a) ta có O1+O2=180=> O2=180-O1=180-36=144

TA CÓ : O1=O3 =36 ( đối đỉnh )

O2=O=144 ( đối đỉnh)

b) ta có góc tOt'= góc tOx+O4+góc y'Ot'= \(\frac{36}{2}\)+144+ \(\frac{36}{2}\)=180

=> Ot và Ot' nằm trên cùng đường thẳng

mặt khác Ot và Ot' cùng chung gốc O

=> Ot và Ot' là 2 tia đối

0 1 2 3 4 x x' y y' t t'

Bài 1:

a: góc xOy'=180-110=70 độ

góc zOy'=70/2=35 độ

góc yOt=góc x'Oy/2=70/2=35 độ

b: Vì góc yOt=góc y'Oz

nên góc y'Oz+góc y'Ot=180 độ

=>Oz và Ot là hai tia đối nhau

25 tháng 7 2017

Giải
_  Ta có  \(\widehat{xOy}=\widehat{x'Oy'}=40^0\)( đối đỉnh) => \(\widehat{xOm}=\widehat{mOy}=\widehat{y'On}=\widehat{nOx'}=\frac{40^0}{2}=20^0\)
_  \(\widehat{x'Oy}=\widehat{xOy'}=180^0-40^0=140^0\)

21 tháng 9 2021

ghjhhhfghdfhgd

Bài 1:

a: góc zOy'=góc xOy'/2=(180-110)/2=35 độ

góc x'Oy=180-110=70 độ

=>góc yOt=70/2=35 độ

b: Vì góc xOz=góc x'Ot

nên góc x'Ot+góc x'Oz=180 độ

=>Ot và Oz là hai tia đối nhau

10 tháng 6 2019

x O y y' x' t t'

+) Tính \(\widehat{yOx'}\)

Ta có: \(\widehat{yOx'}+\widehat{xOy}=180^0\)(kề bù)

hay \(\widehat{yOx'}+36^0=180^0\)

\(\Leftrightarrow\widehat{yOx'}=180^0-36^0\)

\(\Leftrightarrow\widehat{yOx'}=144^0\)

Vậy \(\widehat{yOx'}=144^0\)

+) Tính \(\widehat{y'Ox'}\)

Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox'}\) và \(\widehat{yOx}\)là hai góc đối đỉnh.

\(\Rightarrow\widehat{y'Ox'}=\widehat{xOy}=36^0\)

Vậy \(\widehat{y'Ox'}=36^0\)

+) Tính \(\widehat{y'Ox}\)

Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox}\) và \(\widehat{yOx'}\)là hai góc đối đỉnh.

\(\Rightarrow\widehat{yOx'}=\widehat{xOy}'=144^0\)

Vậy \(\widehat{y'Ox}=144^0\)

b) Vì \(\widehat{y'Ox'}=\widehat{xOy}\)mà Ot là tia phân giác của \(\widehat{xOy}\),mà Ot' là tia phân giác của \(\widehat{x'Oy'}\)nên Ot và Ot' (điều hiển nhiên)

18 tháng 9 2015

bài này trong sách gk có mà