Tìm x,y \(\in\)N:
\(9x^2+5=y\left(y+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: vế trái 9x2+5 ko chia hết cho 3
=> y(y+1) không chia hết cho 3 => y và y +1 ko chia hết cho 3
Mà y, y+1 là 2 số tự nhiên liên tiếp nên y=3k + 1, y+1 = 3k+2 (k\(\in\)N)
Phương trình trở thành:
\(9x^2+5=\left(3k+1\right)\left(3k+2\right)\Leftrightarrow9x^2+5=9k^2+9k+2\Leftrightarrow\)\(3x^2+1=3k^2+3k\) (2)
Ta có vế phải của (2) chia hết cho 3 nhưng vế trái thì ko (vô lý)
=>ko tồn tại đẳng thức
=> ko tồn tại x, y thỏa 9x^2 +5 = y(y+1)
Vậy...
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
a) \(x+2y+\left(x-y\right)\)
\(=x+2y+x-y\)
\(=2x+y\)
b) \(2x+y-\left(3x-5y\right)\)
\(=2x+y-3x+5y\)
\(=-x+6y\)
c) \(3x^2-4y^2+6xy+7+\left(-x^2+y^2-8xy+9x+1\right)\)
\(=3x^2-4y^2+6xy+7-x^2+y^2-8xy+9x+1\)
\(=2x^2-3y^2-2xy+9x+8\)
d) \(4x^2y-2xy^2+8-\left(3x^2y+9xy^2-12xy+6\right)\)
\(=4x^2y-2xy^2+8-3x^2y-9xy^2+12xy-6\)
\(=x^2y-11xy^2+2+12xy\)
\(\begin{cases}xy\left(x+1\right)=x^3+y^2+x-y\left(1\right)\\3y\left(2+\sqrt{9x^2+3}\right)+\left(4y+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\left(2\right)\end{cases}\)
Điều kiện xác định : mọi \(x\in Z\)
Ta có : \(xy\left(x+1\right)=x^3+y^2+x-y\Leftrightarrow x^3-x^2y+y^2-xy+x-y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y-1\right)=0\Leftrightarrow\begin{cases}y=x\\y=x^2+1\end{cases}\)
Với \(y=x^2+1\) thay vào phương trình (2) ta được :
\(3\left(x^2+1\right)\left(2+\sqrt{9x^2+3}\right)+\left(4x^2+6\right)\left(\sqrt{1+x+x^2}+1\right)=0\)
Giải ra ta có phương trình vô nghiệm
Với y=x, thay vào phương trình thứ 2, ta được :
\(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\)
\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=-\left(2x+1\right)\left(\sqrt{3+\left(2x+1\right)^2}+2\right)\)
\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=\left(-2x-1\right)\left(\sqrt{3+\left(-2x-1\right)^2}+2\right)\)
Xét hàm số \(f\left(t\right)=t\left(\sqrt{t^2+2}+2\right)\)
Ta có : \(f'\left(t\right)=\sqrt{t^2+2}+2+\frac{t^2}{\sqrt{t^2+2}}>0\) suy ra hàm số đồng biến
Từ đó suy ra \(3x=-2x\Leftrightarrow x=-\frac{1}{5}\)
Vậy hệ phương trình có nghiệm \(\left(x,y\right)=\left(-\frac{1}{5};-\frac{1}{5}\right)\)
Bài 1:
\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)
Bài 2:
\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)
\(9x^2+5\)không chia hết cho 3
\(\Rightarrow y\left(y+1\right)\)không chia hết cho 3 \(\Rightarrow\)y và y + 1 không chia hết cho 3. Mà y và y + 1 là 2 số tự nhiên liên tiếp nên y phải có dạng: y = 3k + 1 ; y + 1 = 3k + 2
Phương trình trở thành:
\(9x^2+5=\left(3k+1\right)\left(3k+2\right)\Leftrightarrow9x^2+5=9k^2+9k+2\Leftrightarrow3x^2+1=3k^2+3k\)(2)
Vế trái (2) không chia hết cho 3; Vế phải của (2) chia hết cho 3 nên (2) không có nghiệm nguyên.
Hay PT đã cho không có nghiệm x;y nguyên
không chia hết cho 3
$\Rightarrow y\left(y+1\right)$⇒y(y+1)không chia hết cho 3 $\Rightarrow$⇒y và y + 1 không chia hết cho 3. Mà y và y + 1 là 2 số tự nhiên liên tiếp nên y phải có dạng: y = 3k + 1 ; y + 1 = 3k + 2
Phương trình trở thành:
$9x^2+5=\left(3k+1\right)\left(3k+2\right)\Leftrightarrow9x^2+5=9k^2+9k+2\Leftrightarrow3x^2+1=3k^2+3k$9x2+5=(3k+1)(3k+2)⇔9x2+5=9k2+9k+2⇔3x2+1=3k2+3k(2)
Vế trái (2) không chia hết cho 3; Vế phải của (2) chia hết cho 3 nên (2) không có nghiệm nguyên.
Hay PT đã cho không có nghiệm x;y nguyên