Cho biểu thức N = \(3x^4+4x^2y^2+y^4+2y^2\) với \(x^2+y^2=1\) . Tính giá trị của biểu thức N.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=2x^4+3x^2y^2+y^4+y^2\)
\(N=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(N=2x^2x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)
\(N=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2+1\right)\)
Thay x2+y2=1 vào ta được:
\(N=2x^2.1+y^2.\left(1+1\right)=2x^2+2y^2=2\left(x^2+y^2\right)=2.1=2\)
Vậy N=2
Sửa đề: N=2x^4+3x^2y^2+y^4+y^2
N=2x^4+2x^2y^2+x^2y^2+y^4+y^2
=(x^2+y^2)(2x^2+y^2)+y^2
=2x^2+y^2+y^2
=2(x^2+y^2)
=2
dùng hằng đẳng thức nhé bạn
\(N=2x^4+4x^2y^2+2y^4-y^4-x^2y^2+y^2\)
\(N=2\left(x^4+2x^2y^2+y^4\right)-y^2\left(x^2+y^2\right)+y^2\)
\(N=2\left(x^2+y^2\right)^2-y^2\left(x^2+y^2\right)+y^2\)
mà ta có: \(x^2+y^2=1\)
\(\Rightarrow N=2-y^2+y^2=2\)
chúc bạn học tốt
Bài 1:A=4x4+7x2y2+3y4+5y2=4x2(x2+y2)+3y2(x2+y2)+5y2=20x2+15y2+5y2=20(x2+y2)=100.
A=4x4+7x2y2+3y4+5y2
=4x2(x2+y2)+3y2(x2+y2)+5y2
=20x2+15y2+5y2
=20x2+(15+5)y2
=20(x2+y2)=100
a. Ta có: \(3x2xy-\frac{2}{3}x^2y-4x^2.\frac{1}{3}y=6x^2y-\frac{4}{3}x^2y=\left(6-\frac{2}{3}-\frac{4}{3}\right)x^2y=4x^2y.\)
b. Thay \(x=-2,y=\frac{1}{8}\)vào đơn thức \(4x^2y\), ta được: \(4x^2y=4\left(-2\right)^2.\frac{1}{8}=2\).
Vậy, giá trị của biểu thức \(x=-2,y=\frac{1}{8}\rightarrow=2\)
a) Thế x và y ta có:
\(-2.\left(-3\right)-5+11+3.\left(-3\right)\)
\(=6-5+11-9=3\)
b) Thế x và y ta có:
\(2.5-3.\left(-3\right)+5\left(5-\left(-3\right)\right)+15\)
\(=10+9+5\left(5+3\right)+15\)
\(=10+9+40+15=74\)
c) Thế x và y ta có:
\(4.\left(-3\right)-4\left(-3-2.5\right)-7\left(5-2\right)\)
\(=-12-4.\left(-13\right)-7.3\)
\(=-12+52-21=19\)
a: \(M=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot x^3\cdot xy^2\cdot z^2=\dfrac{1}{2}x^4y^2z^2\)
Hệ số là 1/2
Biến là \(x^4;y^2;z^2\)
b: \(N=x^2y\left(4+5-3\right)=6x^2y=6\cdot2^2\cdot\left(-1\right)=-24\)
Thay \(x=\dfrac{1}{2};y=-1\) vào B, ta được:
\(B=\left[\left(\dfrac{1}{2}\right)^3-4\cdot\left(\dfrac{1}{2}\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)^2-4\right]:\left[3\cdot\left(\dfrac{1}{2}\right)^3-3\cdot\left(-1\right)^2-3\cdot\left(-1\right)\right]\)
\(=\left(\dfrac{1}{8}+4\cdot\dfrac{1}{4}+3\cdot1-4\right):\left(3\cdot\dfrac{1}{8}-3\cdot1+3\right)\)
\(=\left(\dfrac{1}{8}+1+3-4\right):\left(\dfrac{3}{8}-3+3\right)\)
\(=\dfrac{1}{8}\cdot\dfrac{8}{3}=\dfrac{1}{3}\)
\(N=3x^4+3x^2y^2+x^2y^2+y^4+2y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+y^2\right)+2y^2\)
\(=3x^2+3y^2=3\)