tìm đkxđ \(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)
\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)
Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)
a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)
=>x+6<0
=>x<-6
b: ĐKXĐ: (-2)/(6-x)>=0
=>6-x<0
=>x>6
c: ĐKXĐ: (-x+3)/(-6)>=0
=>-x+3<=0
=>-x<=-3
=>x>=3
d: ĐKXĐ: (7x-1)/-9>=0
=>7x-1<=0
=>x<=1/7
e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0
=>x+2>=0
=>x>=-1
f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0
=>x-2>=0
=>x>=2
a) ĐKXĐ: x>=0 , 2x-6+\(\sqrt{x^2-9}\)\(\ne0\)\(\Leftrightarrow x\ne3\)
ĐKXĐ: \(x^2-9\ge0\) và \(2x-6+\sqrt{x^2-9}\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge9\\2\left(x-3\right)+\sqrt{x^2-9}\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\2\left(x-3\right)+\sqrt{x^2-9}\ne0\end{cases}}\)hoặc \(\hept{\begin{cases}x\le-3\\2\left(x-3\right)+\sqrt{x^2-9}\ne0\end{cases}}\)
*Với x>=3 thì 2(x-3) + căn bậc hai của (x^2 - 9) >=0
vậy 2(x-3) + căn bậc hai của (x^2 - 9) =0 khi x=3 => 2(x-3) + căn bậc hai của (x^2 - 9) khác 0 khi x khác 3
*Với x<=-3
Giả sử căn bậc hai của (x^2 - 9) + 2(x-3) = 0 nên căn bậc hai của (x^2 - 9) = -2(x-3)
<=> x^2 - 9 =4(x-3)^2 (vì x<=-3 nên -2(x-3)>=0)
<=> x^2 - 9 = 4x^2 - 24x +36
<=> 3x^2 - 24x + 45= 0
<=> 3(x-5)(x-3)=0
<=> x= 5 và x = 3 (không thỏa điều kiện)
Do đó căn bậc hai của (x^2 - 9) + 2(x-3) khác 0 với mọi x<=-3
Vậy ĐKXĐ là x>3 và x<=-3
Câu b để làm sau
1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)
\(\Leftrightarrow2x-1>0\)
\(\Leftrightarrow x>\frac{1}{2}\)
\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)
Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)
2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)
Vậy \(ĐKXĐ:x\ge1\)
3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)
\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)
Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)
4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)
\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)
Vậy \(ĐKXĐ:1\le x\le3\)
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
mình giúp bài 3 cho
\(\sqrt{25x-125}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=6\left(ĐKXĐ:x\ge5\right)\)
\(< =>\sqrt{25\left(x-5\right)}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=6\)
\(< =>\sqrt{25}.\sqrt{x-5}-3\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-3.\frac{\sqrt{x-5}}{3}-\frac{1}{3}.3.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-\sqrt{x-5}-\sqrt{x-5}=6\)
\(< =>3\sqrt{x-5}=6< =>\sqrt{x-5}=2\)
\(< =>x-5=4< =>x=4+5=9\left(tmđk\right)\)