K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2021

a) 32 - 6 . (8 - 23) + 18 =  32 - 6 . (8 - 8) + 18

= 32 - 6 . 0 + 18 = 32 + 18 = 50

b) (3 . 5 - 9)3 . (1 + 2 . 3)2 + 42

= (15 - 9)3 . (1 + 6)2 + 42

= 63 . 72 + 42 = 216 . 49 + 16 = 10 584 + 16 = 10 600

28 tháng 7 2023

a) 32 - 6 . (8 - 23) + 18 =  32 - 6 . (8 - 8) + 18

= 32 - 6 . 0 + 18 = 32 + 18 = 50

b) (3 . 5 - 9)3 . (1 + 2 . 3)2 + 42

= (15 - 9)3 . (1 + 6)2 + 42

= 63 . 72 + 42 = 216 . 49 + 16 = 10 584 + 16 = 10 600

29 tháng 6 2021

\(a,A=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)

\(=4\sqrt{2}\)

\(b,B=\left|1-\sqrt{5}\right|+\sqrt{5+2\sqrt{5}+1}\)

\(=\left|1-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left|1-\sqrt{5}\right|+\left|\sqrt{5}+1\right|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

\(c,C=\dfrac{2+\sqrt{6}+2-\sqrt{6}}{\left(2+\sqrt{6}\right)\left(2-\sqrt{6}\right)}=\dfrac{4}{4-6}=-2\)
 

AH
Akai Haruma
Giáo viên
29 tháng 6 2021

Lời giải:

a. 

\(A=2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-\sqrt{50}=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)

\(=(2-9+16-5)\sqrt{2}=4\sqrt{2}\)

b.

\(B=\sqrt{(1-\sqrt{5})^2}+\sqrt{(\sqrt{5}+1)^2}=|1-\sqrt{5}|+|\sqrt{5}+1|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

c.

\(C=\frac{2+\sqrt{6}+2-\sqrt{6}}{(2-\sqrt{6})(2+\sqrt{6})}=\frac{4}{2^2-6}=-2\)

26 tháng 3 2021

a) 9 234 : [3 . 3. (1 + 83)] = 9 234 : [3 . 3 . (1 + 512)]

= 9 234 : [3 . 3 . 513] = 9 234 : 4617 = 2

b) 76 - {2 . [2 . 52 - (31 - 2 . 3)]} + 3 . 25

= 76 - {2 . [2 . 25 - (31 - 6)]} + 75 

= 76 - {2 . [50 - 25]} + 75 = 76 - {2 . 25} + 75 = 76 - 50 + 75 = 101

28 tháng 7 2023

a) 9 234 : [3 . 3. (1 + 83)] = 9 234 : [3 . 3 . (1 + 512)]

= 9 234 : [3 . 3 . 513] = 9 234 : 4617 = 2

b) 76 - {2 . [2 . 52 - (31 - 2 . 3)]} + 3 . 25

= 76 - {2 . [2 . 25 - (31 - 6)]} + 75 

= 76 - {2 . [50 - 25]} + 75 = 76 - {2 . 25} + 75 = 76 - 50 + 75 = 10

a: =2+6*(-1)^2019+2026

=2028-6

=2022

b: \(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}...\cdot\dfrac{625}{624}\)

\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2}{\left(4-1\right)\left(4+1\right)}...\cdot\dfrac{625}{\left(25-1\right)\left(25+1\right)}\)

\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{1\cdot2\cdot3\cdot...\cdot48}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\)

\(=\dfrac{49}{1}\cdot\dfrac{2}{50}=\dfrac{98}{50}=\dfrac{49}{25}\)

26 tháng 3 2021

 a) 32 . 53 + 92 = 9 . 125 + 81

= 1 125 + 81 = 1 206

b) 83 : 42 - 52 = 512 : 16 - 25 = 32 - 25 = 7

c) 33 . 92 - 52.9 + 18 : 6 = 27 . 81 - 25 . 9 + 3

= 2 187 - 225 + 3 = 1 962 + 3 = 1 965

28 tháng 7 2023

 a) 32 . 53 + 92 = 9 . 125 + 81

= 1 125 + 81 = 1 206

b) 83 : 42 - 52 = 512 : 16 - 25 = 32 - 25 = 7

c) 33 . 92 - 52.9 + 18 : 6 = 27 . 81 - 25 . 9 + 3

= 2 187 - 225 + 3 = 1 962 + 3 = 1 965

a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)

\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)

\(=33\sqrt{3}\cdot\sqrt{3}\)

=99

b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)

\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)

c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=36-36\sqrt{2}+18\sqrt{3}\)

d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)

\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)

\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)

\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)

2 tháng 7 2021

a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)

   \(=28.3+9.3-4.3=99\)

b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)

  \(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)

6 tháng 3 2022

\(=\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{12+4\sqrt{6}+2+8\sqrt{3}+4\sqrt{2}+4-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{\left(2\sqrt{3}+\sqrt{2}\right)^2+4\left(2\sqrt{3}+\sqrt{2}\right)+4-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{\left(2\sqrt{3}+\sqrt{2}+2\right)^2-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(2\sqrt{3}+\sqrt{2}\right)=20\)

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Lời giải:
\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}\)

\(=|\sqrt{3}+1|-|\sqrt{3}-1|=\sqrt{3}+1-(\sqrt{3}-1)=2\)

$\Rightarrow A\geq \sqrt{2}$

\(B=2\sqrt{6}-4\sqrt{2}+(9+4\sqrt{2})-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}\)

\(=9\)

17 tháng 9 2021

a)ta có:\(A^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)\)=\(2+\sqrt{3}+2-\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)

=\(4-2\sqrt{1}=4-2=2\)

\(\Rightarrow A=\pm\sqrt{2}\) mà A>0\(\Rightarrow A=\sqrt{2}\)

b)B=\(2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)=9

a: \(=\left(2\sqrt{3}-12\sqrt{3}+15\sqrt{3}\right)\cdot\sqrt{3}=5\sqrt{3}\cdot\sqrt{3}=15\)

b: \(=\left(6\sqrt{2}-16\sqrt{2}+15\sqrt{2}\right):5=\sqrt{2}\)

c: \(=\dfrac{\left(2\sqrt{5}-6\sqrt{5}+15\sqrt{5}\right)}{\sqrt{5}}=17-6=11\)

`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`

`= 2xy`.

Thay `x = 2/3; y = -3/4` vào BT:

`2 . 2/3 . -3/4 = -1.`

`b, x(x-2y) - y(y^2-2x)`

`= x^2 - 2xy - y^3 + 2xy`

`= x^2 - y^3`

Thay `x = 5; y =3` vào BT:

`= 5^2 - 3^3 = 25 - 27 = -2`

22 tháng 7 2023

a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)

\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)

\(=2xy\)

Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:

\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)

b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)

\(=x^2-2xy-y^3+2xy\)

\(=x^2-y^3\)

Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)