K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

Qua trung diem M doan AB vẽ đường thẳng xx'vuông góc AB . Trên Mx lấy C và D còn trên Mx' lấy E

a) CM:AC= CB

b)CM: tam giác ACD = tam giác BCD

c) CM: goc EAD = goc EBD

NV
15 tháng 2 2022

Áp dụng định lý Pitago cho tam giác vuông ACD:

\(CD^2=AD^2+AC^2\)

Áp dụng định lý Pitago cho tam giác vuông ABC:

\(CB^2=AB^2+AC^2\)

\(\Rightarrow CD^2-CB^2=AD^2+AC^2-AB^2-AC^2=AD^2-AB^2\) (1)

Áp dụng định lý Pitago cho tam giác vuông ADE:

\(ED^2=AD^2+AE^2\)

Áp dụng định lý Pitago cho tam giác vuông ABE:

\(EB^2=AB^2+AE^2\)

\(\Rightarrow ED^2-EB^2=AD^2+AE^2-AB^2-AE^2=AD^2-AB^2\) (2)

(1);(2) \(\Rightarrow CD^2-CB^2=ED^2-EB^2\)

15 tháng 2 2022

Ta cần CM: \(CD^2-CB^2=ED^2-EB^2\Leftrightarrow CD^2-AB^2-AC^2=ED^2-EB^2\Leftrightarrow EB^2-AB^2=ED^2-\left(CD^2-AC^2\right)\Leftrightarrow AE^2=ED^2-AD^2\left(luônđúng\right)\) (vì các tam giác ACD, ABE,ADE đều vuông tại A) \(\Rightarrowđpcm\)

a) Xét tứ giác ADME có 

ME//AD(gt)

MD//AE(gt)

Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ADME có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))

nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ADME là hình chữ nhật(cmt)

nên ED=AM(Hai đường chéo trong hình chữ nhật ADME)

mà ED=5cm(gt)

nên AM=5cm

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

\(\Leftrightarrow BC=2\cdot AM=2\cdot5=10\left(cm\right)\)

Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{4.8\cdot10}{2}=24\left(cm^2\right)\)

c) Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(gt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(gt)

Do đó: D là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

Ta có: ΔAHB vuông tại H(AH⊥BC tại H)

mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)

nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

nên HD=AD

Ta có: ΔAHC vuông tại H(AH⊥BC tại H)

mà HE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)

nên \(HE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

nên HE=AE

Xét ΔEAD và ΔEHD có 

EA=EH(cmt)

ED chung

AD=HD(cmt)

Do đó: ΔEAD=ΔEHD(c-c-c)

\(\widehat{EAD}=\widehat{EHD}\)(hai góc tương ứng)

mà \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)

nên \(\widehat{EHD}=90^0\)

hay HD⊥HE(đpcm)

11 tháng 2 2018

câu a ta có : <MAE = 90

suy ra tam giác MAE là tam giác vuông :< AME + <MEA = 90 ĐỘ ( đ/lí tổng 3 góc áp dụng vào tam giác vuông )

gọi n là giao điểm của EH và CD

vì <MND =90 độ suy ra <NMD +<MPN=90độ

vì cùng phụ nhau với < m suy ra <MEA =<MDN

xét tam giác ACD và tam giác AME :

AD =AE (GT)

<MEA=<MDN (cmt)

<CAD =<MAE =90độ (do AC vuông góc với MB )

SUY RA TAM GIÁC ACD = TAM GIÁC AME(G.C.G)

:A

8 tháng 8 2019

bài này k cần vẽ hình ak bạn

Sửa đề: D nằm trên AC sao cho AD=1/3AC

Vẽ DE//AB(E thuộc BC)

Xét ΔCAB có DE//AB

=>DE/AB=CD/CA=2/3

=>DE/18=2/3

=>DE=12(cm)

20 tháng 11 2016

AB=AE thì E trùng với C à? Sai đề bài rồi!