K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

\(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)

14 tháng 7 2016

4x2 - 9 =0

<=> ( 2x +3 ) ( 2x- 3 ) =0

<=> \(\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-3\\2x=3\end{cases}}\) 

<=> \(\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}\)

26 tháng 10 2021

\(\Leftrightarrow M\cdot\left(4x^2+2x-9\right)=\left(4x^2+2x-18-4x^2-2x\right)\left(4x^2+2x-18+4x^2+2x\right)\)

\(\Leftrightarrow M\cdot\left(4x^2+2x-9\right)=-18\cdot\left(8x^2+4x-18\right)\)

\(\Leftrightarrow M=-18\cdot2=-36\)

7 tháng 10 2017

Ta có

4 x 2 + 2 x - 18 2 - 4 x 2 + 2 x 2 = 4 x 2 + 2 x - 18 + 4 x 2 + 2 x 4 x 2 + 2 x - 18 - 4 x 2 - 2 x = 8 x 2 + 4 x - 18 - 18 = 2 4 x 2 + 2 x - 9 - 18 = - 36 4 x 2 + 2 x - 9 ⇒ m = - 36

Đáp án cần chọn là: C

7 tháng 6 2021

`a)16x^2-24x+9=25`

`<=>(4x-3)^2=25`

`+)4x-3=5`

`<=>4x=8<=>x=2`

`+)4x-3=-5`

`<=>4x=-2`

`<=>x=-1/2`

`b)x^2+10x+9=0`

`<=>x^2+x+9x+9=0`

`<=>x(x+1)+9(x+1)=0`

`<=>(x+1)(x+9)=0`

`<=>` \(\left[ \begin{array}{l}x=-9\\x=-1\end{array} \right.\) 

`c)x^2-4x-12=0`

`<=>x^2+2x-6x-12=0`

`<=>x(x+2)-6(x+2)=0`

`<=>(x+2)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\) 

7 tháng 6 2021

`d)x^2-5x-6=0`

`<=>x^2+x-6x-6=0`

`<=>x(x+1)-6(x+1)=0`

`<=>(x+1)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\) 

`e)4x^2-3x-1=0`

`<=>4x^2-4x+x-1=0`

`<=>4x(x-1)+(x-1)=0`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac14\end{array} \right.\) 

`f)x^4+4x^2-5=0`

`<=>x^4-x^2+5x^2-5=0`

`<=>x^2(x^2-1)+5(x^2-1)=0`

`<=>(x^2-1)(x^2+5)=0`

Vì `x^2+5>=5>0`

`=>x^2-1=0<=>x^2=1`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\) 

11 tháng 10 2021

1: Ta có: \(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=-1\end{matrix}\right.\)

11 tháng 10 2021

undefined

12 tháng 9 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

a)x2-6x+9

=x2-2.x.3+32

=(x-3)2

b)4x2+4x+1

=(2x)2+2.2x.1+12

=(2x+1)2

c)4x2+12xy+9y2

=(2x)2+2.2x.3y+(3y)2

=(2x+3y)2

d)4x4-4x2+4

=(2x2)2-2.2x2.2+22

=(2x2-2)2

24 tháng 11 2021

\(=8x^3+27-8x^3-7=20\)

24 tháng 11 2021

bằng 20

28 tháng 6 2023

Đề yc gì em?

31 tháng 7 2021

1. ( 3x + 2)- 4

= (3x+2-2)(3x+2+2)

= 3x(3x+4)

2. 4x2 - 25y2

= (2x-5y)(2x+5y)

3. 4x2- 49

=(2x-7)(2x+7)

4. 8z3 + 27

=(2z+3)(4x2-6z+9)

5. \(\dfrac{9}{25}x^4-\dfrac{1}{4}\)

\((\dfrac{3}{5}x^2-\dfrac{1}{2})(\dfrac{3}{5}x^2+\dfrac{1}{2})\)

6. x32  - 1

=(x16-1)(x16+1)

7. 4x2 + 4x + 1

=(2x+1)2

8. x2 - 20x + 100

=(x-10)2

9. y4 -14y2 + 49

=(y2-7)2

10.  125x3 - 64y3

= (5x-4y)(25x2+20xy+16y2)

1) \(\left(3x+2\right)^2-4=\left(3x+2+2\right)\left(3x+2-2\right)=3x\left(3x+4\right)\)

2) \(4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

3) \(4x^2-49=\left(2x-7\right)\left(2x+7\right)\)

4) \(8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)

5) \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)

6) \(x^{32}-1=\left(x^{16}-1\right)\left(x^{16}+1\right)\)

\(=\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)

7) \(4x^2+4x+1=\left(2x+1\right)^2\)

8) \(x^2-20x+100=\left(x-10\right)^2\)

9) \(y^4-14y^2+49=\left(y^2-7\right)^2\)

1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)

hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)

2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)

hay \(x\in\left\{1;5\right\}\)

3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)

hay \(x\in\left\{-4;3;-3\right\}\)

5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)

\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)

\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)

hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)

14 tháng 2 2022

1.

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)

\(\Leftrightarrow x+3=5x-2\)

\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)

2.

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)

\(\Leftrightarrow x^2+x+1=x^2-2x+16\)

\(\Leftrightarrow3x=15\Leftrightarrow x=5\)

3.

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)