Cho tam giác ABC có AC > AB. Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB và BC lần lượt tại D và E. Gọi M và N theo thứ tự là trung điểm của cạnh AC và BC. Gọi K là giao điểm của MN và AI. Gọi H là giao điểm của DE và CI. Chứng minh rằng:
a) Bốn điểm I, E, K, C cùng thuộc một đường tròn.
b) Ba điểm D, E, K thẳng hàng.
c) Bốn điểm A, H, K, C cùng thuộc một đường tròn.