cho x,y>0 thỏa mãn\(x^3+y^3=2\) CMR \(x^2+y^2\le2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=x^3y^3\left(x^2+y^2\right)=\frac{1}{8}.2xy.2xy.2xy.\left(x^2+y^2\right)\)
\(\le\frac{1}{8}\left[\frac{\left(4xy+2xy+x^2+y^2\right)^4}{256}\right]\)(áp dụng BĐT AM-GM cho 4 số)
\(=\frac{1}{8}.\frac{\left[4xy+\left(x+y\right)^2\right]^4}{256}\le\frac{1}{8}.\frac{\left[2\left(x+y\right)^2\right]^4}{256}=2\)
Đẳng thức xảy ra khi x = y = 1
Ta có đpcm/
Áp dụng BĐT Bunhiacôpxki , ta có :
\(\left(x^2+y^2\right)^2=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)^2\) \(\le\left(x+y\right)\left(x^3+y^3\right)=2\left(x+y\right)\)
\(\Leftrightarrow\left(x^2+y^2\right)^4\le4\left(x+y\right)^2=4\left(1.x+1.y\right)^2\le4\left(1+1\right)\left(x^2+y^2\right)=8\left(x^2+y^2\right)\)
\(\Leftrightarrow\left(x^2+y^2\right)^3\le8\)
\(\Leftrightarrow x^2+y^2\le2\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi x = y = 1
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)
Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)
\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)
bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)