K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+50}\)

\(=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+50\right).50:2}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{50.51}\)

\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(=2.\frac{49}{102}=\frac{49}{51}\)

Ủng hộ mk nha ^_-

24 tháng 1 2016

tick trước đi rồi giải thiệt đó

24 tháng 1 2016

49/50 chuẩn ko sai

Ai  ấn Đúng 0 sẽ may mắn cả năm

18 tháng 8 2020

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(=\frac{1}{2\times\left(2+1\right):2}+\frac{1}{3\times\left(3+1\right):2}+\frac{1}{4\times\left(4+1\right):2}+...+\frac{1}{50\times\left(50+1\right):2}\)

\(=\frac{1}{2}\times\frac{1}{2\times3}+\frac{1}{2}\times\frac{1}{3\times4}+\frac{1}{2}\times\frac{1}{4\times5}+...+\frac{1}{2}\times\frac{1}{49\times50}\)

\(=\frac{1}{2}\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{49\times50}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{1}{2}\times\frac{12}{25}=\frac{6}{25}\)

20 tháng 8 2020

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+..+50}\)

\(=\frac{1}{2.\left(2+1\right):2}+\frac{1}{3.\left(3+1\right):2}+\frac{1}{4.\left(4+1\right):2}+..+\frac{1}{50.\left(50+1\right):2}\)

\(=\frac{1}{2}.\frac{1}{2.3}+\frac{1}{2}.\frac{1}{3.4}+\frac{1}{2}.\frac{1}{4.5}+..+\frac{1}{2}.\frac{1}{49.50}\)

\(=\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{1}{2}.\frac{12}{25}=\frac{6}{25}\)

2 tháng 8 2015

1/1+2 + 1/1+2+3 +1/1+2+3+4 +...+1/1+2+3+...+50

Ta có 2/2(1+2)+2/2(1+2+3)+...+2/2(1+2+...+50)

=2/6+2/12+2/20+...+2/2550

=2/2.3+2/3.4+...+2/50.51

=2(1/2.3+1/3.4+...+1/50.51)

=2(1/1-1/2+1/2-...+1/50-1/51)

=2.(1-1/51)

=2.50/51=100/51

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+50}\)

\(=\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{50.51:2}=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{100.101}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{1}{2}.\frac{49}{102}=\frac{49}{204}\)

25 tháng 1 2016

A=1/1+2+1/1+2+3+1/1+2+3+4+.....+1/1+2+3+4+...+50

Ta có 1/1+2+3+...n=1/[n*(n+1)/2]=2*[1/n(n+1)]=2*[1/n-1/n+1]

Thay n=1;2;3;4;5;6;...;50 Ta có A=2*[1/2-1/51]=49/51

vậy.......................................................

13 tháng 9 2015

c;=(50-49)(50+49)+(48-47)(48+47)+.............+(2+1)(2-1)

=50+49+48+............+1

=(50+1)50=2550:2=1275

d;=(2^4-1)(2^4+1)(2^8+1)(2^16+1)

=(2^8-1)(2^8+1)(2^16+1)

=(2^16-1)(2^16+1)

=2^32-1

e;=(3-1)(3+1)(3^2+1)...........(3^16+1)

=(3^2-1)(3^2+1)..............(3^16+1)

=(3^16-1)(3^16+1)=3^32-1

tu tinh ket qua luy thua tao khong thua hoi dau

26 tháng 6 2017

Đây mà toán lớp 5 à.

Áp dụng công thức

\(\frac{1}{1+2+...+n}=\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2}{n\left(n+1\right)}\)  ta được

\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+....+50}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{49}{51}\)

26 tháng 6 2017

Ta có : \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.......+\frac{1}{1+2+3+......+50}\)

\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+......+\frac{1}{\frac{50.51}{2}}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{50.51}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{50.51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(=2.\frac{1}{2}-2.\frac{1}{51}\)

\(=1-\frac{2}{51}=\frac{49}{51}\)

10 tháng 12 2021

????  nhầm lớp hả bạn