Cho hình bình hành ABCD, Có hai đường chéo AC và BD cắt nhau tại O. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD. Chứng minh rằng Tứ giác AECF là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra AE=CF: ED=FB
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có
FB=ED
\(\widehat{KBF}=\widehat{IDE}\)
Do đó: ΔKBF=ΔIDE
Suy ra: KB=ID
Xét tứ giác KBID có
KB//ID
KB=ID
Do đó: KBID là hình bình hành
Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường
a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF và DE=BF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có
KB=ID
\(\widehat{KBF}=\widehat{IDE}\)
Do đó: ΔKBF=ΔIDE
Suy ra: KB=ID
Xét tứ giác BKDI có
BK//ID
BK=ID
Do đó: BKDI là hình bình hành
Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường
a , ta có:AE//CF (vì cùng vuông góc vsBD)
=> góc FCO= góc EAO (vì so le trong )
OA = OC (theo t/c hình bh )
xét 2 tam giác vuông OAE và OCF có:
góc FOC = góc EAO ( cm trên )
OA = OC (cmt)
=>tg OAE = tg OCF (cạnh huyền - góc nhọn )
=>OE = OF ( 2 cạnh tương ứng )
b. ta có : AE// CF ( theo a ) (1)
AE = CF ( vì tg OAE= tg OCF ( theo a )) (2)
từ (1) và (2) => AECF là hbh
( hi vọng đúng !!)
Vì ABCD là hình bình hành
=> + AB = DC
AB // DC => góc ABE = góc FCD ( sole trong )
+ AD= BC
AD // BC
+) Xét \(\Delta AEB\)và \(\Delta CFD\)có :
\(AB=CD\left(cmt\right)\)
\(\widehat{AEB}=\widehat{CFD}=90^o\)(gt )
\(\widehat{ABE}=\widehat{FCD}\)(cmt)
Do đó : tam giác vuông AEB = tam giác vuông CFD ( cạnh huyền - góc nhọn )
\(\Rightarrow AE=FC\)( cặp cạnh tương ứng ) (1)
+) vÌ \(\hept{\begin{cases}AE\perp DB\\FC\perp DB\end{cases}}\)
=> AE // FC (2)
Từ (1) và (2)
=> AECF là hình bình hành ( đpcm )
a) ABCD là hình bình hành => AD=BC, AD//BC
--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)
Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.
b) AHDK không thể là hình bình hành nha --> phải là AHCK
Chứng minh: AH//CK (cùng vuông góc BD)
CH//AK (vì ABCD là hình bình hành)
=> AHCK là hình bình hành
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB(Hai cạnh đối của hình bình hành ABCD)
\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)
Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)
Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)
Ta có: ED+EC=DC(E nằm giữa D và C)
FB+FA=AB(F nằm giữa A và B)
mà AB=DC(Hai cạnh đối của hình bình hành ABCD)
và ED=FB(cmt)
nên EC=FA
Xét tứ giác ECFA có
EC=FA(cmt)
EA=CF(cmt)
Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)