K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

a) \(3\sqrt{a^2-4a+4}=3\sqrt{\left(a-2\right)^2}=3\left|a-2\right|=3\left(a-2\right)\) (vì \(a\ge2\))

b) \(2\sqrt{9a^2+12a+4}=2\sqrt{\left(3a+2\right)^2}=2\left|3a+2\right|=2\left(-3a-2\right)=-2\left(3a+2\right)\) (vì \(a< -\frac{2}{3}\))

NV
12 tháng 6 2019

a/ \(\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{-8a}{3a}=-\frac{8}{3}\)

b/ \(\frac{3}{a-1}\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3}{\left(a-1\right)}.\frac{2\left|a-1\right|}{5}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)

c/ \(\frac{3\sqrt{9a^2b^4}}{\sqrt{a^2b^2}}=\frac{9.\left|a\right|.b^2}{\left|a\right|\left|b\right|}=9\left|b\right|\)

d/ \(\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

12 tháng 6 2019

a/ \(=\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{2}{a}.\frac{-4a}{3}=\frac{-8}{3}\)

b/ \(=\frac{3}{a-1}.\frac{\left|2a-2\right|}{5}=\frac{3}{a-1}.\frac{2\left(a-1\right)}{5}=\frac{6}{5}\)

c/ \(=\sqrt{\frac{162a^2b^4}{2a^2b^2}}=\sqrt{81b^2}=9\left|b\right|\)

d/ \(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

19 tháng 7 2021

\(1) \sqrt{9a^2.b^2}\)=3ab

\(2) \sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=9a\)

\(3) \sqrt{3a^5}.12a=12\sqrt{3a^7}\)

\(4) \sqrt{5a}.\sqrt{45a}-3a=15a-3a=12a\)

\(5) \sqrt{3+\sqrt{a}}.\sqrt{3-\sqrt{a}}=\sqrt{(3+\sqrt{a}).(3-\sqrt{a})} =\sqrt{9-a} \)

\(6) \sqrt{3+\sqrt{5}}.\sqrt{3\sqrt{5}} =\sqrt{\sqrt{3\sqrt{5}}.(3+\sqrt{5})} =\sqrt{9+\sqrt{15}}\)

 

1) \(\sqrt{9a^2b^2}=3ab\)

2) \(\sqrt{3a}\cdot\sqrt{27a}=9a\)

4) \(\sqrt{5a}\cdot\sqrt{45a}-3a=15a-3a=12a\)

a,\(ab^2\sqrt{\dfrac{3}{a^2b^4}}=ab^2.\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}=ab^2.\dfrac{\sqrt{3}}{ab^2}=\sqrt{3}\)

b,\(\sqrt{\dfrac{27\left(a-3\right)^2}{48}}=\dfrac{3\sqrt{3}\left(a-3\right)}{4\sqrt{3}}=\dfrac{3}{4}\left(a-3\right)\)

c,\(\sqrt{\dfrac{9+12a+4a^2}{b^2}}=\dfrac{\sqrt{\left(3+2a\right)^2}}{\sqrt{b^2}}=\dfrac{3+2a}{b}\)

d, \(\left(a-b\right).\sqrt{\dfrac{ab}{\left(a-b\right)^2}}=\left(a-b\right).\dfrac{\sqrt{ab}}{\sqrt{\left(a-b\right)^2}}=\left(a-b\right).\dfrac{\sqrt{ab}}{\left(a-b\right)}=\sqrt{ab}\)

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=a|a|=−a và b0b≠0 nên b2>0b2>0   b2=b2|b2|=b2)

=3=−3.

b) 27(a3)248=9(a3)21627(a−3)248=9(a−3)216

=9.(a3)216=3.|a3|4=9.(a−3)216=3.|a−3|4

=3(a3)4=3(a−3)4

(Do a>3a>3 nên |a3|=a3|a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b29+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2ab=2a+3b=3+2a−b=−2a+3b.

(Do a1,5a≥−1,5  3+2a03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=b|b|=−b)

d) (ab).ab(ab)2=(ab).ab(ab)2(a−b).ab(a−b)2=(a−b).ab(a−b)2

=(ab).ab|ab|=(ab).ab(ab)=(a−b).ab|a−b|=(a−b).ab−(a−b)

=ab=−ab.

(Do a<b<0a<b<0 nên |ab|=(ab)|a−b|=−(a−b) và ab>0ab>0)

13 tháng 5 2021

a) ab2.3a2b4=ab2.3a2b4ab2.3a2b4=ab2.3a2b4

=ab2.3a2.b4=ab2.3|a|.|b2|=ab2.3a2.b4=ab2.3|a|.|b2|

=ab2.3(a).b2=ab2.3(−a).b2 (Do a<0a<0 nên |a|=a|a|=−a và b0b≠0 nên b2>0b2>0   b2=b2|b2|=b2)

=3=−3.

b) 27(a3)248=9(a3)21627(a−3)248=9(a−3)216

=9.(a3)216=3.|a3|4=9.(a−3)216=3.|a−3|4

=3(a3)4=3(a−3)4

(Do a>3a>3 nên |a3|=a3|a−3|=a−3)

c) 9+12a+4a2b2=32+2.3.2a+(2a)2b29+12a+4a2b2=32+2.3.2a+(2a)2b2

=(3+2a)2b2=|3+2a||b|=(3+2a)2b2=|3+2a||b|
=3+2ab=2a+3b=3+2a−b=−2a+3b.

(Do a1,5a≥−1,5  3+2a03+2a≥0 nên |3+2a|=3+2a|3+2a|=3+2a và b<0b<0 nên |b|=b|b|=−b)

d) (ab).ab(ab)2=(ab).ab(ab)2(a−b).ab(a−b)2=(a−b).ab(a−b)2

=(ab).ab|ab|=(ab).ab(ab)=(a−b).ab|a−b|=(a−b).ab−(a−b)

=ab=−ab.

(Do a<b<0a<b<0 nên |ab|=(ab)|a−b|=−(a−b) và ab>0ab>0)

b: B=căn 49a^2+3a

=|7a|+3a

=7a+3a(a>=0)

=10a

c: C=căn16a^4+6a^2

=4a^2+6a^2

=10a^2

d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)

TH1: a>=0

D=6a^3-6a^3=0

TH2: a<0

D=-6a^3-6a^3=-12a^3

e: \(E=3\sqrt{9a^6}-6a^3\)

\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)

=3*3a^3-6a^3(a>=0)

=3a^3

f: \(F=\sqrt{16a^{10}}+6a^5\)

\(=\sqrt{\left(4a^5\right)^2}+6a^5\)

=-4a^5+6a^5(a<=0)

=2a^5

12 tháng 5 2018

a/ \(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)

\(\sqrt{\left(2a^2-3\right)^2}-\sqrt{\left(a^2-4\right)^2}\)

\(|2a^2-3|-|a^2-4|\)

\(2a^2-3+a^2-4\)
\(3a^2-7\)

Thay a=\(\sqrt{3}\).Ta có:

\(3.\left(\sqrt{3}\right)^2-7\)

= 3.3-7=2

12 tháng 5 2018

b/ \(\sqrt{10a^2-12a\sqrt{10}+36}\)

\(\sqrt{\left(a\sqrt{10}\right)^2-2.a\sqrt{10}.6+6^2}\)

\(\sqrt{\left(a\sqrt{10}-6\right)^2}\)

\(|a\sqrt{10}-6|\)

=  \(-a\sqrt{10}+6\)

Thay  a= \(\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)=\(\frac{3}{\sqrt{10}}\),Ta có:

\(-\frac{3}{\sqrt{10}}.\sqrt{10}+6\)

= -3+6 =3

a: \(=2ab\cdot\dfrac{-15}{b^2a}=\dfrac{-30}{b}\)

b: \(=\dfrac{2}{3}\cdot\left(1-a\right)=\dfrac{2}{3}-\dfrac{2}{3}a\)

c: \(=\dfrac{\left|3a-1\right|}{\left|b\right|}=\dfrac{3a-1}{b}\)

d: \(=\left(a-2\right)\cdot\dfrac{a}{-\left(a-2\right)}=-a\)