K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

Lâp bảng xét dấu

                              2016                          2017

x-2016          _           0              +                               +

x-2017          _                           _                 0             +

Nếu x<2016 thì |x-2016|=2016-x,|x-2017|=2017-x

Ta có 2016-x+2017-x=2018

                    4033-2x=2018

                             2x=2015

                                x=1007,5

Nếu 2016<=x<=2017thif |x-2016|=x-2016;|x-2017|=2017-x

Ta có x-2016+2017-x=2018

                          ox+1=2018

                              0x=2017 (vô lí)

Nếu x>=2017 thi |x-2016|=x-2016;|x-2017|=x-2017

Ta có x-2016+x-2017=2018

                      2x-4033=2018

                                2x=6051

                                  x=3025,5

Vậy x=1007,5 hoăc x=3025,5

19 tháng 3 2018

Thay x = 2018 vào \(A=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x-1\) ta được 

\(2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018-1\)

\(=\)\(2018^{2018}-2019\left(2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\right)-1\)

Đặt \(B=2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\)

\(2018B=2018^{2018}-2018^{2017}+2018^{2016}-...-2018^3+2018^2\)

\(2018B+B=\left(2018^{2018}-2018^{2017}+...+2018^2\right)+\left(2018^{2017}-2018^{2016}+...+2018\right)\)

\(2019B=2018^{2018}-2018\)

\(B=\frac{2018^{2018}-2018}{2019}\)

\(\Rightarrow\)\(A=2018^{2018}-2019.B-1\)

\(\Rightarrow\)\(A=2018^{2018}-\frac{2019\left(2018^{2018}-2018\right)}{2019}-1\)

\(\Rightarrow\)\(A=2018^{2018}-\left(2018^{2018}-2018\right)-1\)

\(\Rightarrow\)\(A=2018^{2018}-2018^{2018}+2018-1\)

\(\Rightarrow\)\(A=2018-1\)

\(\Rightarrow\)\(A=2017\)

Vậy giá trị của \(A=2017\) tại \(x=2018\)

Chúc bạn học tốt ~ 

12 tháng 5 2018

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)

\(\Leftrightarrow x+2=41\)

\(\Leftrightarrow x=41-2\)

\(\Leftrightarrow x=39\)

5 tháng 4 2020

???????????????????????????????????????????????????????

8 tháng 8 2018

Có \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)(BĐT Bunhiacopxki)

\(=\left(1+1+1\right)^2=9\)

Vậy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>1\)

Vậy bài toán ko giải đc; Nếu mk làm sai thì thứ lỗi vì mk năm nay mới lên lớp 8

19 tháng 6 2016

\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(xy+yz+zx=0\)(theo đề) nên \(2\left(xy+yz+zx\right)=0\)

\(\Rightarrow x^2+y^2+z^2=0\)

\(\hept{\begin{cases}x^2\ge0\\y^2\ge0\\z^2\ge0\end{cases}}\) (với mọi x;y;z) nên \(x^2+y^2+z^2\ge0\) (với mọi x;y;z)

Để \(x^2+y^2+z^2=0\) \(\Leftrightarrow\) \(\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}\Leftrightarrow}x=y=z=0\)

Vậy \(A=\left(0-1\right)^{2016}+0^{2017}+\left(0+1\right)^{2018}=\left(-1\right)^{2016}+0+1^{2018}=2\)

DD
16 tháng 1 2021

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

22 tháng 1 2018

Đáp án: a= 2017