K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

Đề bài phải là : \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+b\right)\left(c+d\right)\)

Áp dụng bất đẳng thức \(\left(x+y\right)^2\ge4xy\)

Ta có ; \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge4.\frac{a+b}{2}.\frac{c+d}{2}=4.\frac{\left(a+b\right)\left(c+d\right)}{4}=\left(a+b\right)\left(c+d\right)\)

Vậy \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+b\right)\left(c+d\right)\)

5 tháng 8 2019

a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)

Thay:

\(\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)

=> đpcm

1 tháng 11 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)

1 tháng 11 2016

 

\(\frac{a}{b}\) =\(\frac{c}{d}\) =>\(\frac{a}{c}\) =\(\frac{b}{d}\) =\(\frac{a-b}{c-d}\) =>\(\frac{ab}{cd}\) = \(\frac{a}{c}\) x\(\frac{b}{d}\) = \(\frac{a-b}{c-d}\) x \(\frac{a-b}{c-d}\) = \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Còn với\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) thì bạn chỉ cần thay dấu trừ thành dấu công là được

Chúc bạn học tốtleuleu

17 tháng 10 2016

Vì \(\frac{a}{b}=\frac{c}{d}\) nên ad=bc và \(\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}\)(1)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(2)

Từ (1) và (2), ta suy ra: \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

1 tháng 9 2019

\(a+c=2b\Rightarrow2bd=ad+cd=c\left(b+d\right)=bc+cd\)

\(\Rightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Lúc đó: \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=2\left(\frac{10.bk+dk}{10b+d}\right)^2-\left(\frac{bk}{b}\right)^2\)

\(=2k^2-k^2=k^2\)(1)

và \(\left(\frac{c}{d}\right)^2=\left(\frac{dk}{d}\right)^2=k^2\)(2)

Từ (1) và (2) suy ra \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)(đpcm)

NV
11 tháng 2 2020

Với \(a=b=c=10\) hiển nhiên BĐT sai

Thôi rồi viết thiếu đề bài

abcd=1 nha các bạn ahihi

NV
4 tháng 9 2020

Với mọi x;y ta luôn có: \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow\frac{x^2+2xy+y^2}{4}\ge xy\)

\(\Leftrightarrow\left(\frac{x}{2}+\frac{y}{2}\right)^2\ge xy\)

Áp dụng vào bài toán:

\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left(\frac{a+c}{2}+\frac{b+d}{2}\right)^2\ge\left(a+c\right)\left(b+d\right)\) (đpcm)

Dấu "=" xảy ra khi \(a+c=b+d\)

4 tháng 9 2020

Cảm ơn bạn nha!