cho 5x+12y=13 tim min x2+y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 1)(x - 2). b) 4(x - 2)(x - 7).
c) (x + 2)(2x +1). d) (x - l)(2x - 7).
e) (2x + 3y - 3)(2x - 3y +1). g) (x - 3)( x 3 + x 2 - x +1).
h) (x + y)(x + y-l)(x + y + l).
Đường tròn (C) tâm \(I\left(1;-4\right)\) bán kính \(R=4\)
Tiếp tuyến d' song song d nên có dạng: \(5x+12y+c=0\) (với \(c\ne-6\))
d' tiếp xúc (C) khi và chỉ khi:
\(d\left(I;d'\right)=R\Leftrightarrow\dfrac{\left|5.1-12.4+c\right|}{\sqrt{5^2+12^2}}=4\)
\(\Leftrightarrow\left|c-43\right|=52\Rightarrow\left[{}\begin{matrix}c=95\\c=-9\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}5x+12y+95=0\\5x+12y-9=0\end{matrix}\right.\)
Đề là: \(P=x^3+y^3-\dfrac{x^2+y^2}{\left(x-1\right)\left(y-1\right)}\)
Hay \(P=\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
Cái nào em nhỉ?
\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)
\(\Rightarrow M\le9\)
\(M_{max}=9\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-\sqrt{3};\sqrt{3}\right);\left(\sqrt{3};-\sqrt{3}\right)\)
\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{\dfrac{1}{3}\left(x^2+y^2+xy\right)+\dfrac{2}{3}\left(x^2+y^2-2xy\right)}{x^2+y^2+xy}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\)
\(\Rightarrow M\ge1\)
\(M_{min}=1\) khi \(\left\{{}\begin{matrix}x-y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow x=y=\pm1\)
\(\dfrac{x^2+y^2}{2}\ge xy\Rightarrow-xy\ge-\dfrac{x^2+y^2}{2}\)
\(\Rightarrow4=x^2+y^2-xy\ge x^2+y^2-\dfrac{x^2+y^2}{2}=\dfrac{x^2+y^2}{2}\)
\(\Rightarrow x^2+y^2\le8\)
\(C_{max}=8\) khi \(x=y=\pm2\)
\(x^2+y^2\ge-2xy\Rightarrow-xy\le\dfrac{x^2+y^2}{2}\)
\(4=x^2+y^2-xy\le x^2+y^2+\dfrac{x^2+y^2}{2}=\dfrac{3}{2}\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge\dfrac{8}{3}\)
\(C_{min}=\dfrac{8}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{\sqrt{3}};\dfrac{2}{\sqrt{3}}\right);\left(\dfrac{2}{\sqrt{3}};-\dfrac{2}{\sqrt{3}}\right)\)
Lời giải:
\(P=5x^2+y^2+4xy-18x-12y+2018(*)\)
\(\Leftrightarrow 5x^2+x(4y-18)+(y^2-12y+2018-P)=0(I)\)
Coi $(I)$ là pt bậc 2 ẩn $x$.
Vì đẳng thức $(*)$ luôn có nghĩa nên PT $(I)$ luôn có nghiệm. Điều này xảy ra khi \(\Delta'=(2y-9)^2-5(y^2-12y+2018-P)\geq 0\)
\(\Leftrightarrow 5P-y^2+24y-10009\geq 0\)
\(\Leftrightarrow P\geq \frac{y^2-24y+10009}{5}\)
Mà \(\frac{y^2-24y+10009}{5}=\frac{(y-12)^2+9865}{5}\geq \frac{9865}{5}=1973\)
Do đó $P\geq 1973$ hay $P_{\min}=1973$ tại $(x,y)=(-3,12)$
$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$
$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$
$\Leftrightarrow x=3; y=-2$
---------------------
$B=9x^2+y^2+2z^2-18x+4z-6y+30$
$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$
$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$
$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$
$\Leftrightarrow x=1; y=3; z=-1$
$C=x^2+y^2+z^2-xy-yz-xz+3$
$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$
$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$
$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$
$\Rightarrow C\geq 3$
Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$
$\Leftrihgtarrow x=y=z$
--------------------------------------
$D=5x^2+2y^2+4xy-2x+4y+2021$
$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$
$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$
$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$
$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$
Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$
$\Leftrightarrow x=1; y=-2$
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(13^2=\left(5.x+12.y\right)^2\le\left(5^2+12^2\right)\left(x^2+y^2\right)\Leftrightarrow x^2+y^2\ge1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}5x+12y=13\\\frac{x}{5}=\frac{y}{12}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{13}\\y=\frac{12}{13}\end{cases}}\)
Vậy Min \(x^2+y^2=1\Leftrightarrow\hept{\begin{cases}x=\frac{5}{13}\\y=\frac{12}{13}\end{cases}}\)