K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(13^2=\left(5.x+12.y\right)^2\le\left(5^2+12^2\right)\left(x^2+y^2\right)\Leftrightarrow x^2+y^2\ge1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}5x+12y=13\\\frac{x}{5}=\frac{y}{12}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{13}\\y=\frac{12}{13}\end{cases}}\)

Vậy Min \(x^2+y^2=1\Leftrightarrow\hept{\begin{cases}x=\frac{5}{13}\\y=\frac{12}{13}\end{cases}}\)

31 tháng 1 2017

a) (x - 1)(x - 2).                        b) 4(x - 2)(x - 7).

c) (x + 2)(2x +1).                    d) (x - l)(2x - 7).

e) (2x + 3y - 3)(2x - 3y +1).    g) (x - 3)( x 3   +   x 2  - x +1).

h) (x + y)(x + y-l)(x + y + l).

10 tháng 3 2016

nhân 2 lên rồi ghếp hằng đẳng thức

NV
10 tháng 4 2021

Đường tròn (C) tâm \(I\left(1;-4\right)\) bán kính \(R=4\)

Tiếp tuyến d' song song d nên có dạng: \(5x+12y+c=0\) (với \(c\ne-6\))

d' tiếp xúc (C) khi và chỉ khi:

\(d\left(I;d'\right)=R\Leftrightarrow\dfrac{\left|5.1-12.4+c\right|}{\sqrt{5^2+12^2}}=4\)

\(\Leftrightarrow\left|c-43\right|=52\Rightarrow\left[{}\begin{matrix}c=95\\c=-9\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}5x+12y+95=0\\5x+12y-9=0\end{matrix}\right.\)

10 tháng 4 2021

cảm ơn thầy ạ haha

 

15 tháng 7 2021

Đúng thù thì ❤️ giúp mik nha bạn. Thx bạn

 

undefined

NV
23 tháng 7 2021

Đề là: \(P=x^3+y^3-\dfrac{x^2+y^2}{\left(x-1\right)\left(y-1\right)}\)

Hay \(P=\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\) 

Cái nào em nhỉ?

23 tháng 7 2021

cái ở dưới ạ

NV
27 tháng 7 2021

\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow M\le9\)

\(M_{max}=9\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-\sqrt{3};\sqrt{3}\right);\left(\sqrt{3};-\sqrt{3}\right)\)

\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{\dfrac{1}{3}\left(x^2+y^2+xy\right)+\dfrac{2}{3}\left(x^2+y^2-2xy\right)}{x^2+y^2+xy}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\)

\(\Rightarrow M\ge1\)

\(M_{min}=1\) khi \(\left\{{}\begin{matrix}x-y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow x=y=\pm1\)

NV
21 tháng 7 2021

\(\dfrac{x^2+y^2}{2}\ge xy\Rightarrow-xy\ge-\dfrac{x^2+y^2}{2}\)

\(\Rightarrow4=x^2+y^2-xy\ge x^2+y^2-\dfrac{x^2+y^2}{2}=\dfrac{x^2+y^2}{2}\)

\(\Rightarrow x^2+y^2\le8\)

\(C_{max}=8\) khi \(x=y=\pm2\)

\(x^2+y^2\ge-2xy\Rightarrow-xy\le\dfrac{x^2+y^2}{2}\)

\(4=x^2+y^2-xy\le x^2+y^2+\dfrac{x^2+y^2}{2}=\dfrac{3}{2}\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\ge\dfrac{8}{3}\)

\(C_{min}=\dfrac{8}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{\sqrt{3}};\dfrac{2}{\sqrt{3}}\right);\left(\dfrac{2}{\sqrt{3}};-\dfrac{2}{\sqrt{3}}\right)\)

21 tháng 7 2021

undefinedĐúng thì like giúp mik nha bạn. Thx bạn

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

\(P=5x^2+y^2+4xy-18x-12y+2018(*)\)

\(\Leftrightarrow 5x^2+x(4y-18)+(y^2-12y+2018-P)=0(I)\)

Coi $(I)$ là pt bậc 2 ẩn $x$.

Vì đẳng thức $(*)$ luôn có nghĩa nên PT $(I)$ luôn có nghiệm. Điều này xảy ra khi \(\Delta'=(2y-9)^2-5(y^2-12y+2018-P)\geq 0\)

\(\Leftrightarrow 5P-y^2+24y-10009\geq 0\)

\(\Leftrightarrow P\geq \frac{y^2-24y+10009}{5}\)

\(\frac{y^2-24y+10009}{5}=\frac{(y-12)^2+9865}{5}\geq \frac{9865}{5}=1973\)

Do đó $P\geq 1973$ hay $P_{\min}=1973$ tại $(x,y)=(-3,12)$

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$